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Study Objectives: The current gold standard for assessment of obstructive sleep apnea is the in-laboratory polysomnography. This approach has high 
costs and inconveniences the patient, whereas alternative ambulatory systems are limited by reduced diagnostic abilities (type 4 monitors, 1 or 2 channels) 
or extensive setup (type 3 monitors, at least 4 channels). The current study therefore aims to validate a simplified automated type 4 monitoring system using 
tracheal body sound and movement data.
Methods: Data from 60 subjects were recorded at the University Hospital Ulm. All subjects have been regular patients referred to the sleep center with 
suspicion of sleep-related breathing disorders. Four recordings were excluded because of faulty data. The study was of prospective design. Subjects 
underwent a full-night screening using diagnostic in-laboratory polysomnography and the new monitoring system concurrently. The apnea-hypopnea index 
(AHI) was scored blindly by a medical technician using in-laboratory polysomnography (AHIPSG). A unique algorithm was developed to estimate the apnea-
hypopnea index (AHIest) using the new sleep monitor.
Results: AHIest strongly correlates with AHIPSG (r2 = .9871). A mean ± 1.96 standard deviation difference between AHIest and AHIPSG of 1.2 ± 5.14 was 
achieved. In terms of classifying subjects into groups of mild, moderate, and severe sleep apnea, the evaluated new sleep monitor shows a strong correlation 
with the results obtained by polysomnography (Cohen kappa > 0.81). These results outperform previously introduced similar approaches.
Conclusions: The proposed sleep monitor accurately estimates AHI and diagnoses sleep apnea and its severity. This minimalistic approach may address 
the need for a simple yet reliable diagnosis of sleep apnea in an ambulatory setting.
Clinical Trial Registration: Trial name: Validation of a new method for ambulant diagnosis of sleep related breathing disorders using body sound; URL: 
https://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00011195; Identifier: DRKS00011195
Keywords: monitoring, movement analysis, respiratory sounds, sleep apnea
Citation: Kalkbrenner C, Eichenlaub M, Rüdiger S, Kropf-Sanchen C, Brucher R, Rottbauer W. Validation of a new system using tracheal body sound and 
movement data for automated apnea-hypopnea index estimation. J Clin Sleep Med. 2017;13(10):1123–1130.

INTRODUCTION

With a prevalence of 4% in adult men and 2% in women, ob-
structive sleep apnea (OSA) is one of the most common sleep-
related breathing disorders.1 Additionally, more than 75% of 
people suffering from moderate OSA are either undiagnosed 
or untreated.2 OSA is characterized by multiple breathing ces-
sations during the night due to different possible causes. If 
untreated, this disorder can lead to extensive daytime sleepi-
ness3 and an elevated risk for cardiovascular disease.4–6 The 
main criteria used to indicate the severity of OSA is the apnea-
hypopnea index (AHI), which describes the mean number of 
breathing pauses longer than 10 seconds per hour of sleep. 
Breathing pauses are divided into the categories apnea or hy-
popnea. Apneas are defined by at least 90% reduction in air 
flow and hypopneas are defined by at least 30% reduction in 
air flow including an event-related arousal and/or more than 
3% oxygen desaturation.7

The current gold standard for the assessment of OSA is the 
in-laboratory polysomnography (PSG). This method requires 
an overnight stay of the patient in a sleep laboratory to record 
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and evaluate multiple physiological signals by trained techni-
cians. However, this approach is accompanied by high costs 
and inconveniences for the patient. Furthermore, the extensive 
recording equipment may considerably influence the sleep 
quality and thus falsify the subsequent diagnosis. Additionally, 
the time and labor intensive nature of the PSG paired with the 

BRIEF SUMMARY
Current Knowledge/Study Rationale: Obstructive sleep apnea 
is one of the most common sleep-related breathing disorders. 
The current gold standard for assessment of obstructive sleep 
apnea is the in-laboratory polysomnography. This approach has 
high costs and inconveniences the patient, whereas alternative 
ambulatory systems are limited by reduced diagnostic abilities and 
complicated setup.
Study Impact: The presented new sleep monitor utilizes tracheal 
body sound and movement data to accurately diagnose the presence 
and severity of sleep apnea. This allows simple setup and high 
comfort, reducing the effect on sleep quality in comparison with in-
laboratory polysomnography while outperforming existing ambulatory 
diagnostic systems and previously introduced similar approaches.
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increasing prevalence of OSA has led to a strong demand for 
appropriate hospital facilities. Therefore, several less exten-
sive but similarly reliable methods have been developed. For 
the diagnosis of OSA these are mostly focused on ambulatory 
and screening applications and use either nasal airflow or pe-
ripheral oxygen saturation (SpO2) or a combination of both for 
the diagnosis of OSA.8,9 However, these signals induce several 
problems and limitations. Mouth breathing or misplacement 
causes nasal airflow to frequently fail to measure breathing. 
Additionally, relying exclusively on SpO2 provides an insuf-
ficient specificity and sensitivity.10 To overcome those limita-
tions, multiple systems have been proposed that instead use 
breathing sounds as a main signal for the diagnosis of OSA. 
Here, breathing sounds are recorded either by ambient air mi-
crophones located in the vicinity of the patient11,12 or by deploy-
ing special body sound microphones placed on the patient’s 
neck. First studies with these systems revealed a strong cor-
relation in AHI values with PSG.13,14

A new monitoring system for the diagnosis of OSA using 
body sounds and movement data was developed previously but 
has not yet been fully validated. The new monitoring system 
includes a unique algorithm to automatically detect apnea and 
hypopnea events and estimate apnea-hypopnea index (AHIest). 
The new system is designed to be as comfortable and simple 
as possible in order to minimize its effect on sleep quality and 

allow its use at home without medical supervision. The current 
study aims to validate the new monitoring system in subjects 
with suspected OSA using the apnea-hypopnea index deter-
mined by PSG (AHIPSG).

METHODS

Subjects
Data from 60 subjects were recorded at the sleep center of 
the University Hospital Ulm. Inclusion criteria included a 
suspicion of sleep-related breathing disorders diagnosed by a 
primary care physician and age between 18 and 90 years. Ex-
clusion criteria included known allergies or intolerances with 
adhesive patches, serious illnesses, or diseases that affect the 
participation of the subjects in the study. During their stay sub-
jects underwent a full-night screening using diagnostic PSG 
and the new monitoring system simultaneously. The study was 
approved by the ethics committee of the University of Ulm and 
all subjects gave written informed consent. In total, 4 record-
ings were excluded because of faulty body sound (n = 1), faulty 
airflow (n = 2) or faulty thoracic and abdominal respiratory 
(n = 1) recordings. Patients suffering from central sleep apnea 
or mixed forms (n = 4) and patients suffering from Cheyne-
Stokes respiration (n = 2) were also excluded. Of the remaining 
50 recordings, 13 patients suffered from mild, 11 from moder-
ate, and 15 from severe OSA. OSA was not diagnosed in the 
remaining 11 patients.

Data Acquisition
PSG and the new monitoring system were set up by trained 
medical staff and monitored during the recording. Both record-
ings were performed concurrently. Recording started between 
9:00 pm and 11:00 pm and ended between 5:00 am and 7:00 
am. PSG was carried out by using the PSG system SOMNOlab 
(Co. Weinmann Geräte für Medizin GmbH + Co. KG, Kro-
nsaalsweg 40, 22525 Hamburg, Germany). Electroencephalog-
raphy was carried out including channels C3-A2 and C4-A1 
with a sampling rate of 256 Hz. Furthermore, submental elec-
tromyography, unilateral anterior tibial electromyography, and 
bilateral electrooculography was included and sampled with 
256 Hz. The oronasal airflow was recorded by using a thermis-
tor and was sampled with 32 Hz. Additionally, the thoracic and 
abdominal respiratory movements were measured by using re-
spiratory inductance plethysmograph and were sampled with 
32 Hz. Oxygen saturation was recorded by using finger pulse 
oximetry and sampled with 16 Hz. Finally, a basic heart rate 
monitoring using a 1-lead electrocardiograph sampled with 
256 Hz was also included.

The new monitoring system was developed based on the 
preliminary system previously described by Kalkbrenner et 
al.15 Figure 1 shows an abstract representation of the setup. 
Tracheal body sound was recorded by a body sound micro-
phone attached to the neck and sampled with 5 kHz. This com-
mercially available microphone was designed for long-term 
monitoring of lung sounds to diagnose breathing disorders 
such as asthma and is part of a system called LEOSound (Co. 
Heinen+Löwenstein GmbH & Co. KG Arzbacher Straße 80, 

Figure 1—Abstract representation of the setup of the new 
sleep monitor system.

The microphone is attached to the neck while the remaining hardware 
is attached to the existing thoracic belt of the respiratory inductance 
plethysmograph during polysomnography.
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56130 Bad Ems, Germany). Actigraphy was carried out using 
an inertial measurement unit (IMU) housed together with the 
remaining recording hardware and attached to the existing tho-
racic belt of the respiratory inductance plethysmograph. The 
signals from accelerometer and gyroscope in the IMU were 
sampled with a rate of 250 Hz. The acquired data (sound and 
movements) was transmitted wirelessly to a laptop for storage 
and subsequent data analysis.

For apnea-hypopnea index calculation, apneas and hypop-
neas were scored according to American Academy of Sleep 
Medicine standards,7 which define apneas by ≥ 90% drop of 
baseline flow amplitude with a duration of at least 10 sec-
onds. Hypopneas are defined by ≥ 30% drop of baseline flow 
amplitude with a duration of at least 10 seconds including an 
event related arousal and/or ≥ 3% oxygen desaturation. At least 
90% of the apnea or hypopnea duration must meet their corre-
spondent amplitude reduction criteria. After data recording, a 
trained medical technician manually reviewed all 50 datasets. 
Apneas and hypopneas were scored solely using PSG data. The 
technician was blinded to the results of the new monitoring 
system. Finally, the AHIPSG was calculated as the number of 
apneas and hypopneas per hour of sleep.

Analysis of Sound and Movement Data
In order to automatically calculate AHIest by using the new 
monitoring system a unique algorithm was developed. The fol-
lowing details will give a summary of the proposed method.

To facilitate understanding, the key steps of the algorithm 
are exemplified in Figure 2. Initially the raw audio signal 
is filtered to obtain a preferably pure breathing sound sig-
nal by removing all disruptive and nonrelevant sounds (ie, 

background noise and heart sounds). By calculating the mean 
intensity of the preprocessed audio signal within short-term 
windows, every breathing cycle can be represented by a 
smooth time series. Interpolating the local maxima of single 
respiratory cycle to an envelope curve, long-term changes in 
breathing can be captured. If segments of this signal underlie 
an adaptive threshold for a certain time, they are identified 
as drops in breathing amplitude. Using this method allows 
capture of a broad spectrum of potential apnea and hypopnea 
segments. The following final step of the algorithm aims to 
classify these segments of amplitude drop in apnea, hypop-
nea, and normal breathing. Figure 3 illustrates an example 
of such sequences in respiratory periods showing several 
signals and their relationship between the oronasal airflow 
(PSG) and the tracheal body sound (new sleep monitor). To 
apply the conventional definition of apneas and hypopneas, 
a value representing the normal airflow has to be calculated 
only by using the audio signal. The importance of this step 
is emphasized by the fact that during the night the overall 
relationship between breathing sound amplitude and air-
flow can vary significantly, mainly dependent on sleeping 
position. Based on the findings of previous studies16–18 it is 
possible to continuously relate and revise certain features of 
every breathing cycle to the respective amount of airflow. 
Finally, this technique is utilized for the classification of the 
previously detected segments during the first step into apnea, 
hypopnea, or normal breathing.

In addition, the recorded movement data is used to improve 
the reliability of the detection algorithm by making it more ro-
bust against artefacts. Most audio artefacts within the recorded 
tracheal sound are caused by movements of the subject during 
sleep. These artefacts can easily be recognized by monitoring 
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Figure 2—Illustration of the keys steps of the developed 
algorithm using a typical apnea phase.

(A) Audio signal after preprocessing; (B) smooth envelope representing 
breathing cycles, the dashed curve represents local maxima of breathing 
cycles to detect drops in breathing amplitude; and (C) estimation of 
airflow. Everything below the horizontal line is considered no breathing.
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Figure 3—Illustration of the relationship between oronasal 
airflow recorded by thermistor and tracheal body sound.

From top to bottom, the graphs show typical segments of (A) normal 
breathing, (B) hypopnea and (C) apnea. Dashed curve = thermistor, gray 
curve = tracheal body sound.
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the movements of the subject. Additionally, most changes of 
amplitude in breathing sounds are caused by changes in the 
subjects’ sleeping position due to acoustic coupling, which fa-
cilitates their detection by incorporating the provided move-
ment data. Finally, the AHIest is calculated as the number of 
detected apnea and hypopnea segments per hour, considering 
only artefact-free periods.

Statistics
MATLAB R-2015b (The MathWorks Inc., Natick, Massa-
chusetts, United States) was used to perform all statistical 
analysis. An equivalence test for paired data was used to eval-
uate the agreement between AHIest and AHIPSG. The equiva-
lence limits were set to a mean ± 5 AHI at a significance level 
of .05. To further prove diagnostic agreement between AHI-
est and AHIPSG, Bland-Altman and correlation analysis were 
carried out. Additionally, the performance of the presented 
new monitoring system was evaluated in detail by calculat-
ing the number of correctly and incorrectly classified apneas 
and hypopneas with regard to PSG. For subject classification 
into categories of mild, moderate, and severe OSA, thresholds 
defined by an American Academy of Sleep Medicine Task 
Force19 were used (mild: AHI = 5–14, moderate: AHI = 15–30, 
severe: AHI > 30). Sensitivity, specificity, positive predic-
tive and negative predictive value, and the unweighted Co-
hen kappa coefficient20 were calculated accordingly. Receiver 
operating characteristic curves and the corresponding areas 
under the curves were calculated to evaluate the performance 
against the PSG results.

RESULTS

Subject Characteristics
Detailed anthropometric information of the subjects is shown 
in Table 1. All subjects were referred to the sleep center with 
suspicion of sleep-related breathing disorders. Recordings only 
include so-called diagnostic nights without the presence of any 
therapeutic measures (eg, continuous or autotitrating positive 
airway pressure).

Equivalence Test
The paired difference, D, of AHIest and AHIPSG was calculated. 
Testing D against the equivalence limits revealed:

•	 H0: D = 5; H1: D < 5; P = 4.44e-22; t = −16.62
•	 H0: D = 5; H1: D > −5; P = 3.50e-14; t = 10.32

Therefore, equivalence can be claimed. A standard t test of 
D reveals: P = 2.8e-03, 95% confidence interval = [−1.9153, 
−0.4236], standard deviation = 2.62.

Correlation and Bland-Altman Analysis
Figure 4A shows the correlation scatterplot. This analysis 
reveals strong correlation between AHIest and AHIPSG (coef-
ficient of determination r2 = .9871). Figure 4B shows the 
Bland-Altman plot. Using this analysis, a mean ± 1.96 standard 
deviation difference between AHIest and AHIPSG of 1.2 ± 5.14 is 
calculated. The coefficient of variation is 13%. The plot reveals 
a slight negative bias at low AHI (10 to 20 events/h) and a posi-
tive bias at high AHI (> 30 events/h).

Sensitivity and Specificity
Using PSG with the total of 50 recordings 4,273 apneas and 
1,144 hypopneas are diagnosed. Therefore, the new monitor-
ing system classifies 3,785 apneas and 803 hypopneas correctly 
(true positive). There were 386 apneas and 156 hypopneas that 
are incorrectly classified (false positive). Therefore, in 292 
cases normal breathing is incorrectly classified as apnea, in 
140 cases normal breathing is incorrectly classified as hypop-
nea, 94 hypopneas are incorrectly classified as apneas, and 16 
apneas are incorrectly classified as hypopneas.

Table 1—Anthropometric information of the study subjects 
(n = 50).

Male Female
Sex, n 31 19

Mean Median SD IQR
Age, years 57.42 58.00 14.24 20.75
BMI, kg/m² 31.27 31.18 6.58 8.90
AHI, events/h 21.38 16.29 18.69 30.76
ET, hours:minutes 07:14 07:14 00:35 00:47
TST, hours:minutes 05:03 05:22 01:19 02:09
WASO, hours:minutes 01:48 01:20 01:08 01:30
Number of awakening events 33.20 30.50 14.58 13.25
Sleep efficiency, % 69.89 76.00 17.08 22.48
S1, % 18.01 15.90 16.27 12.73
S2, % 55.41 57.15 16.49 17.63
S3, % 7.85 6.55 7.17 11.70
REM, % 18.72 15.60 11.19 10.90
ODI, events/h 19.03 12.05 19.29 29.78
T90, hours:minutes 00:33 00:09 00:59 00:40

AHI = apnea-hypopnea index, BMI = body mass index, ET = evaluation 
time (contains only artefact-free periods, only this time is considered 
for calculation of characteristic values), IQR = interquartile range, 
ODI = oxygen desaturation index (number of desaturation events per 
hour), SD = standard deviation, T90 = time while SpO2 < 90%, TST = total 
sleep time, WASO = wake after sleep onset.

Table 2—System performance of the new monitoring 
system (n = 50).

Sens. Spec. PPV NPV Cohen 
kappa (CI)

AHI ≥ 5 0.9091 0.9487 0.8333 0.9737 0.83 
(0.65–1.02)

AHI ≥ 15 1.0000 1.0000 1.0000 1.0000 1.00 
(1.00–1.00)

AHI ≥ 30 1.0000 0.9333 0.9722 1.0000 0.95 
(0.86–1.05)

AHI = apnea-hypopnea index, CI = confidence interval, NPV = negative 
predictive value, PPV = positive predictive value, Sens. = sensitivity, 
Spec. = Specificity. 
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Additionally, the aptitude of the sleep monitor to correctly 
classify subjects into the groups mild, moderate, and severe 
OSA is evaluated. Therefore, all subjects are classified into 
three groups using defined thresholds of AHI ≥ 5, AHI ≥ 15, 
and AHI > 30 events/h. A detailed performance evaluation is 
shown in Table 2. A Cohen kappa > 0.81 is reached for all 
groups, which is considered as almost perfect agreement.20 Us-
ing these groups, receiver operating characteristic curves were 
created and are shown in Figure 5. The resulting areas under 
the curves are 0.9627, 1.0, and 0.9962, respectively. Therefore, 
it can be claimed that the new sleep monitor is characterized by 
a high sensitivity and specificity in classifying subjects regard-
ing severity of OSA.

DISCUSSION

The application of a new sleep monitor for automated diagno-
sis of sleep-related breathing disorders based on tracheal body 
sound and movement data was demonstrated and its diagnos-
tic capabilities were validated by comparison against standard 
PSG. The study revealed that the proposed sleep monitor ac-
curately estimates AHI and diagnoses OSA and its severity. 
A mean ± 1.96 standard deviation difference between AHIest 
and AHIPSG of 1.2 ± 5.14 was achieved. Consisting only of a 
small device fixed by a chest belt and a microphone attached to 
the neck, this new sleep monitor guarantees simple setup, high 
comfort, and at the same time reduces the effect on sleep qual-
ity in comparison with existing ambulatory diagnostic systems.

Automated Apnea and Hypopnea Detection
A unique algorithm to automatically calculate AHI was 
established and described. This algorithm utilizes 3 

steps—preprocessing, respiratory drop detection, and classi-
fication of apnea and hypopnea—to determine the AHI using 
the tracheal body sound and movement data. During prepro-
cessing all heart sounds and any noise from the raw audio sig-
nal are removed. The drop detection identifies possible apnea 
and hypopnea events by detecting reductions in breathing am-
plitude. During classification, the previously extracted events 
are inspected in detail to distinguish between apnea, hypop-
nea, and normal breathing. Furthermore, the incorporation of 
movement data facilitates the detection of motion artifacts and 
their suppression in the sound signal.

Most commercially available mobile sleep monitors utilize 
nasal pressure transducers, thermistors, or thoracoabdominal 
movement belts to record airflow. Even though these methods 
are the reference standard for measuring breathing, relying 
solely on one method for the detection of apneas and hypop-
neas provides poor results compared to the accumulation of 
measurements carried out during PSG.21 It is suggested that 
tracheal body sound provides better results, because it is inde-
pendent of breathing route and abdominal/thoracic breathing. 
Nevertheless, body sound recorded at the trachea is affected 
by individual anatomy.22 To compensate for this variation, the 
correlation between sound amplitude and airflow is individu-
ally and continuously recalculated.

Of 4,274 apneas and 1,144 hypopneas, the presented algo-
rithm classified 3,785 apneas (89%) and 803 hypopneas (70%) 
correctly and 386 apneas (9%) and 156 hypopneas (14%) incor-
rectly. Ninety-four hypopneas (24% of false positive apneas) 
were incorrectly classified as apneas and 16 apneas (10% of 
false positive hypopneas) were incorrectly classified as hypop-
neas. These results reveal the main weakness of the developed 
algorithm, which is to correctly distinguish between apneas 
and hypopneas, as well as between hypopneas and reduced but 
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Figure 4—Apnea-hypopnea index as measured by the new sleep monitor and polysomnography.

(A) Relationship between AHI measured by the new sleep monitor (AHIest) and AHI measure by polysomnography (AHIPSG). r2 = coefficient of determination, 
n = number of data points. (B) Bland-Altman plot showing variance between AHIest and AHIPSG, horizontal lines indicate the bias and the limit of agreement 
(± 1.96 standard deviation), CV = coefficient of variation.
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still normal breathing. This bias might be rooted in the fact that 
the crucial oximetry signal is not available during detection. 
Without information about oxygen desaturation or arousals 
the correct classification of hypopneas by definition is inac-
curate. However, a study by Rofail et al.23 suggests that addi-
tional oximetry might not necessarily increase the accuracy of 
OSA diagnosis. Nevertheless, it might be necessary for future 
funding. Another cause of imprecision is the fact that PSG is 
evaluated manually and therefore open to the subjectivity of 
the scoring technician. This bias can hardly be compensated 
by the detection algorithm and therefore is an additional source 
of imprecision.

Apnea-Hypopnea Index Estimation
The presented results prove that the new sleep monitor can re-
liably diagnose OSA. The equivalence test revealed values of 
P < .001 for testing the difference between AHIest and AHIPSG 
against the equivalence limits. Based on this test, equivalence 
between AHIest and AHIPSG can be claimed. Furthermore, 

correlation analysis (see Figure 4) revealed a very strong cor-
relation between AHIest and AHIPSG. In addition, when clas-
sifying subjects into groups of different severities of OSA the 
new sleep monitor shows an almost perfect agreement with the 
PSG. These results clearly outperform previously introduced 
approaches based on breathing sounds.12,13,24,25 It is suggested 
that the predominant limitation of the previous reports is the 
method of recording audio signals. None of the previously pro-
posed methods utilizes a highly sensitive body sound micro-
phone designed for long-term monitoring of breathing sounds. 
The provided audio signal represents breathing activity highly 
accurate and reliable, and therefore improves the detection of 
apneas and hypopneas. An additional limiting factor of previ-
ous studies is suggested to be the disruption of the breathing 
signal through artifacts and changes in sleeping position. This 
was demonstrated by Oksenberg and Silverberg26 by showing 
that changes in sleeping position have a significant effect on 
the acoustic features of body sound. This fact restricts previous 
approaches to only use acoustic features that are minimally in-
fluenced by changes in sleeping position. The presented system 
overcomes this issue by detecting changes in sleeping position 
and compensating for them during analysis. In summary, the 
presented method is of strong diagnostic ability in evaluating 
the severity of OSA and the calculated AHIest shows distinctive 
agreement with AHIPSG.

Because the study was limited to OSA, it was not possible 
to evaluate the diagnostic performance of the presented moni-
tor in respect to other sleep-related breathing disorders. It is 
suggested that the monitor is currently not fit to diagnose other 
sleep-related breathing disorders. Therefore, it is of immense 
importance to only use the presented monitor in populations 
with a high OSA pretest probability. This should reduce the 
number of false-positive diagnoses and avoid false-negative di-
agnoses for patients suffering from other sleep-related breath-
ing disorders who are better suited for PSG.

Similar to the presented sleep monitor, other ambulatory 
type 4 monitors are also simplified devices consisting of 1 or 2 
channels.9 Systematic reviews for the diagnostic performance 
of those monitors revealed poor results.27,28 In general, an appli-
cation of those devices for the definite diagnosis of OSA is not 
recommended.8 The commonly used type 3 monitors (at least 
4 channels, usually including electrocardiography, airflow, 
effort, oximetry) provide positive results for the diagnosis of 
OSA compared to PSG.28,29 The diagnostic performance of the 
presented monitor, however, is superior to type 4 monitors and 
comparable with type 3 monitors. It is therefore suggested that 
the presented monitor is capable of at least providing a type 3 
quality diagnostic accuracy while maintaining a simplified and 
comfortable setup including only a single lead (body sound mi-
crophone) similar to a typical type 4 monitor. Additionally, the 
evaluation can be fully automated. In addition to saving time, 
this feature might enable non-sleep specialists, such as family 
practitioners, to carry out a simple OSA diagnosis. Further-
more, it is suggested that the presented sleep monitor can be 
used for therapy control in patients in whom a diagnosis has 
already been made. Nevertheless, this is currently not part of 
the presented study and therefore more research is required to 
further examine those suggestions.
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Figure 5—ROC based on scaling groups mild, moderate, 
and severe obstructive sleep apnea.

AHI = apnea-hypopnea index, ROC = receiver operating characteristic.
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Study Advantages and Limitations
The setup of the new sleep monitor and the PSG was performed 
by trained medical staff. Both recordings were performed con-
currently. Four in 60 recordings had to be discarded due to a 
significant amount of data being lost or unusable. Of these, only 
one recording was discarded because of a failure of the new 
monitoring device. The remaining recordings were unusable 
for validation due to a failure of the PSG itself. This provides 
promising advantages such as simple and reliable setup and 
operation of the new sleep monitor without training and medi-
cal knowledge. Therefore, the applicability of the developed 
hardware in home monitoring is suggested. In a home setting, 
studies will be necessary to fully validate this suggestion.

Because recordings only include diagnostic nights without 
the presence of any therapeutic measures, all subjects visited the 
sleep center for the first time. It is suggested that the unfamiliar 
environment paired with the extensive recording equipment has 
led to a high level of wake after sleep onset and therefore to an 
unusual low total sleep time compared to normal sleep time.

All subjects of the current study were recruited with sus-
picion of sleep apnea and all recordings were carried out in a 
clinical environment. Therefore, it is suggested that the pre-
sented results may be limited to only be applicable to these 
populations. Because the presented monitor should be primar-
ily used for home screening, the participants might not be an 
appropriate representation of the target group. Nevertheless, 
the spectrum of subjects comprises forms of no OSA up to se-
vere OSA. Additionally, the new sleep monitor provides stable 
results for all participants. However, these findings may be 
somewhat limited by the small number of females (n = 19) in-
cluded in this study. Therefore, further studies are required to 
fully validate the proposed method in a more diverse subject 
population and a home setting.

Another note of caution is due here because the utilized 
PSG only used a thermistor to measure airflow. It is suggested 
that this causes a slight underestimation of AHI.30 The incor-
poration of a nasal transducer that allows for a more accurate 
assessment of airflow to avoid this bias is therefore highly rec-
ommended in future studies.

Outlook
One major drawback of the presented monitor is the missing 
oximetry. A reasonable approach to tackle this issue while 
keeping the monitor and its setup simple could be to integrate 
the oximetry measurement into the cone of the body sound 
microphone. This approach would add another channel to the 
monitor without affecting the setup or adding any additional 
leads. Current experimental investigations within our research 
group are carried out to evaluate the possibility to detect de-
saturations and pulse at the neck.

A brief analysis of the collected IMU data revealed that pul-
monary ventilation movements are captured in the accelera-
tion and velocity signals. This is because the IMU is placed 
at the upper respiratory inductance plethysmography bands of 
the subject. Furthermore, it is even possible to capture small 
vibrations of the chest caused by snoring. Therefore, it is sug-
gested that the IMU data could be utilized to support snore 
detection in the audio signal and to distinguish between OSA 

and central sleep apnea. Nevertheless, this is currently not part 
of the proposed method and therefore more research is required 
to further examine those assumptions.

Previous work15,31 revealed that it is also possible to calculate 
heart rate using tracheal body sound. Recording heart rate us-
ing the most common methods (eg, electrocardiography, pulse 
wave) requires additional sensors or electrodes and wiring. In 
contrast, the new sleep monitor can record heart rate without 
the need for further hardware and independent of sex, age, or 
BMI of the subject using the proposed simple setup. Previous 
research has established that it is possible to assess informa-
tion about sleep stages using heart rate variability.32–34 Knowl-
edge about sleep stages is essential to estimate sleep quality 
and diagnose different sleep-related disorders. An important 
outlook of the ability to measure heart rate is the possibility 
to evaluate sleep stages using the proposed sleep monitor and 
therefore improve the diagnostic abilities in sleep monitoring 
significantly. Further research should be undertaken to investi-
gate these suggestions.

CONCLUSIONS

OSA is one of the most common sleep disorders; in addition, 
there is an alarming number of untreated patients. Therefore, 
significant effort has been expended to reduce the number of 
untreated patients by developing simpler but still reliable di-
agnostic systems.35 The current gold standard PSG assesses 
patients with an overnight stay in a sleep laboratory, but high 
costs and limited sleep capacities result in long waiting periods 
for patients worldwide. Although at-home sleep monitoring is 
possible, the application of current methods is constrained by 
reduced diagnosis abilities, complicated setup for patients, and 
persistent high costs.

A new comfortable and simple sleep monitoring system for 
the automated diagnosis of OSA using tracheal body sounds 
and movement data is proposed and validated using PSG. In 
conclusion, the current study provides evidence that the pro-
posed sleep monitor can accurately calculate AHI and diag-
nose presence and severity of OSA. The utilized minimalistic 
approach can address the need for a simple but reliable diag-
nosis of OSA. However, its application for home screening, the 
most important field of application for the proposed monitor, is 
not yet validated. Therefore, additional studies need to be car-
ried out to ensure reproducibility and applicability in a home 
setting. To further improve the significance of these studies, 
patient outcomes should be investigated in addition to AHI.

ABBRE VI ATIONS

AHI, apnea-hypopnea-index
BMI, body mass index
CI, confidence interval
CV, coefficient of variation
ODI, oxygen desaturation index
ET, evaluation time
IMU, inertial measurement unit
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NPV, negative predictive value
OSA, obstructive sleep apnea
PPV, positive predictive value
PSG, in-laboratory polysomnography
ROC, receiver operating characteristic
SpO2, peripheral oxygen saturation
T90, time while SpO2 < 90%.
TST, total sleep time
WASO, wake after sleep onset
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