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Abstract Sleep apnea is one of the most common sleep dis-
orders. Here, patients suffer from multiple breathing pauses
longer than 10 s during the night which are referred to as
apneas. The standard method for the diagnosis of sleep apnea
is the attended cardiorespiratory polysomnography (PSG).
However, this method is expensive and the extensive record-
ing equipment can have a significant impact on sleep quality
falsifying the results. To overcome these problems, a comfort-
able and novel system for sleep monitoring based on the re-
cording of tracheal sounds and movement data is developed.
For apnea detection, a unique signal processing method uti-
lizing both signals is introduced. Additionally, an algorithm
for extracting the heart rate from body sounds is developed.
For validation, ten subjects underwent a full-night PSG test-
ing, using the developed sleep monitor in concurrence.
Considering polysomnography as gold standard the devel-
oped instrumentation reached a sensitivity of 92.8% and a
specificity of 99.7% for apnea detection. Heart rate measured
with the proposed method was strongly correlated with heart
rate derived from conventional ECG (r2 = 0.8164). No signif-
icant signal losses are reported during the study. In conclusion,
we demonstrate a novel approach to reliably and noninvasive-
ly detect both apneas and heart rate during sleep.
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1 Introduction

Sleep-related breathing disorders, also known as sleep apnea,
are one of the most common sleep disorders, with a reported
prevalence of 4 and 2% in adult men and women, respectively
[8]. Furthermore, it has been shown that a large number of
people suffering frommoderate sleep apnea (> 75%) are either
undiagnosed or untreated [26]. The disorder is manifested by
multiple breathing cessations during the night, resulting in
extensive daytime sleepiness and an elevated risk for cardio-
vascular disease. The most common form of sleep apnea is
called obstructive sleep apnea syndrome (OSAS) and is
caused by an obstruction of the upper airway, accompanied
by excessive snoring. The main criteria for the diagnosis of
sleep apnea is the average number of breathing pauses longer
than 10 s per hour of sleep, called apnea-hypopnea-index
(AHI). Here, the pauses are divided into the categories apnea
(more than 90% reduction in air flow) or hypopnea (50–90%
reduction in airflow) [20].

The standard method for the diagnosis of sleep apnea is the
attended cardiorespiratory polysomnography (PSG). This pro-
cedure requires overnight hospitalization in a sleep laboratory
or sleep center, during which several physiological signals are
recorded and subsequently evaluated by trained technicians.
This approach is very expensive, time-consuming, and the
number of available beds is limited. Additionally, it has been
reported that the extensive recording equipment has a signif-
icant impact on sleep quality which can falsify the results. On
this account, several less complex but similarly reliable
methods, especially for ambulatory and screening applica-
tions, have been developed. These vary mainly in the type
and number of physiological signals that are recorded and
automatically evaluated. Among those ambulatory methods,
multiple systems using breathing sounds as the main signal for
the diagnosis of sleep apnea have been proposed [7, 19].
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These sounds are recorded either by ambient microphones,
located in the vicinity of the patient [4, 14] or by special body
sound microphones placed on the patient’s neck (tracheal
sounds). Pilot studies with these systems showed good agree-
ment (> 90%) regarding AHI values when compared with
standard polysomnography [17, 25].

After audio recording, elaborate evaluation procedures are
necessary in order to obtain the relevant information for the
diagnosis of sleep apnea. Using breath sounds recorded at the
neck, a widely used approach is the calculation of envelope
curves [17, 25]. Other studies found special features in trache-
al sound spectrums, allowing the distinction between apnea
and non-apnea phases [16, 23].

The goal of the present study was to develop a new system
capable of recording movement and body sounds during
sleep. Based on these signals, a method for extracting apnea
events and heart rate including artifact rejection is described.
The presented techniques and their successful verification are
the basis for further developments towards a comfortable
method for diagnosing sleep-related breathing disorders at
home. The system itself was developed to make the recording
process as simple as possible, minimizing the impact on sleep
quality.

2 Methods

2.1 Data recording

In order to acquire breathing as well as heart sounds with a
single microphone, the selection of an optimal recording po-
sition is crucial. Here, several locations on the upper body and
neck were considered. In agreement with previously men-
tioned studies, the optimal position for recording breathing
sounds was found at the neck in close vicinity to the trachea
(see Fig. 1). This position also allows the acquisition of pulse
sounds originating in the carotid arteries.

For sound detection, a commercially available body sound
microphone was used. This microphone is part of a system
called LEOSound (Heinen + Löwenstein GmbH & Co. KG,
Arzbacher Straße 80, 56130 Bad Ems, Germany) developed
for long-term monitoring of lung sounds in the context of
diagnosing breathing disorders like asthma. However, sleep
monitoring is not included in its field of application. The mi-
crophone is fixed by a double-sided, adhesive membrane also
protecting the sensitive recording electronics from substances
on the skin surface.

In order to provide a comfortable and reliable method for
recording body sounds and movement overnight, an appropri-
ate hardware concept was developed previously described in
[12] (see Fig. 2). To prove the concept of comfortable sleep
monitoring utilizing body sound and movement data, a fully
functional prototype including hardware as well as software

components was developed. It is composed of two separate
components. One is placed on the subject’s body and contains
miniaturized hardware for acquiring sound and movement
(body device). The collected data is then transferred wirelessly
to the second component, a laptop running a specially devel-
oped software. The data communication was realized via
Bluetooth and allows for a constant stream of data from the
body device to the laptop. Here, it is crucial to optimize sender
as well as receiver hardware in order to minimize data loss due
to connection problems. On the body side, a particularly
strong antenna was used to boost the Bluetooth signal and
on the opposite side, the receiver hardware was placed above
the subject’s head to ensure a stable and reliable connection.

For optimal information extraction from the recorded audio
signal, it is important to apply appropriate analogue signal
processing before sampling. Here, the main purpose is ampli-
fication to ensure that even shallow and therefore quiet breath-
ing can be detected. Additionally, very low and very high
frequency parts of the signal are removed to diminish distur-
bances from contact noise or aliasing effects during sampling.
This results in the amplification of frequencies ranging from
30 to 2000 Hz. This should be sufficient to capture the major
parts of heart and breathing sounds [18].

For the detection of movements and sleep position, an in-
ertial measurement unit (IMU) containing an accelerometer
and a gyroscope was included in the system. This allows the
measurement of three-dimensional acceleration and angular
velocity of the body device.

Data from microphone and IMU are sampled by a system
embedded in the body device. The respective sampling spec-
ifications are 5 kHz and 10 bit for the microphone (analogue
input) and 250 Hz and 16 bit for the IMU (digital input).

For the purpose of data receiving and storage, a special
software application was developed. Here, the data from the
body device is presented and stored. In order to ensure suffi-
cient signal quality during initial positioning of the micro-
phone and body device, the display shows audio data in real
time (time and frequency domain). For file-oriented storage of
the data, a data type called European Data Format (EDF) [15]

Fig. 1 Fixation of microphone on subject’s neck in close vicinity to the
trachea
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was chosen. This data format facilitates the synchronous re-
tention of various signal channels with different sampling
rates and is often used in the context of polysomnography.
To summarize, the system records one channel from the micro-
phone and six channels from the IMU (three for acceleration,
three for angular velocity). The subsequent signal processing
and extraction of medical information is done offline, after the
recording process is finished.

2.2 Signal processing

2.2.1 Activity and sleep position

The processing of the movement data aims towards the ex-
traction of the sleeping position and movement activity. Here,
the activity is represented by a parameter ranging from 0 to 20,
which indicates the intensity of the patient’s movements.
Details of the utilized processing techniques were previously
described by Kalkbrenner et al. [13] and are not further ex-
plained here.

2.2.2 Apnea detection

The analysis of the audio signal is divided into apnea and heart
rate detection. For the detection of apnea events, it is important
to state that potential hypopnea events are ignored for the
moment. The entire algorithm for apnea detection is divided
into the sections preprocessing, drop detection, and classifica-
tion. Figure 3 shows a simplified flow chart including all
major steps of the process. The first step (preprocessing) aims
to remove any heart sounds and noise from the raw audio
recordings and results in a signal containing mostly breathing
sounds. Here, an FIR bandpass filter with boundaries between
200 and 2000 Hz is used. These limits were chosen based on
empirical results and related studies found in literature [17, 18,
25]. In order to remove any background noise which could
hinder the detection of quiet breathing sounds, a filtering tech-
nique called spectral subtraction is applied. The procedure is
based on the subtraction of a noise template from the main
signal in the frequency domain [6].

The second section of the algorithm for apnea detection
(drop detection) aims to identify possible apnea events by

scanning the entire signal for drops in breathing sound ampli-
tude. It is based on the procedures presented byAlshaer et al. [2,
3]. In order to facilitate understanding, the key steps of the
algorithm in this section are exemplified in Fig. 4. At first, an
envelope curve E1 representing every single breathing cycle is
extracted by calculating the mean intensity of the preprocessed
audio signal within short-term windows. During snoring, this
procedure causes disproportionally high outliers which do not
correlate to the amount of airflow when compared to normal
breathing. Therefore, these outliers in E1 are cut off using an
adaptive threshold calculated using the standard deviation of
long-term windows. The blue curve in Fig. 4 represents the
resulting envelope E1 whereas the blue dotted curve repre-
sents the signal before removal of the outliers.

The next step of the drop detection is to generate a second
envelope E2 capturing long-term changes in breathing ampli-
tude. This is accomplished by interpolating the local maxima of
single breathing cycles in the (truncated) first envelope E1 to a
curve using the Piecewise Cubic Hermite interpolation method
(see red curve in Fig. 4). All signal segments of the envelope
E2, underlying an adaptive threshold are identified as drops in
breathing amplitude. Finally, these drops and their directly ad-
jacent segments are extracted as possible apnea segments (PAS)
and examined more closely in the subsequent section of the
algorithm. This part of the algorithm was designed to capture
a very broad spectrum of potential apnea segments, leaving the
following section the task to reject the false positive events.

The third and last section of the algorithm (classification)
aims for a detailed examination of the previously extracted
PAS in order to distinguish between apnea and non-apnea
events. Again, in order to facilitate understanding, the key steps
of the algorithm in this section are exemplified in Fig. 5.
Initially, every distinct sound event in the PAS has to be de-
tected individually in order to classify them into breathing or
non-breathing events and to determine the associated air flow
in every breathing phase. Similar to the previous section, the
preprocessed audio signal is divided into short-term windows
and the envelope E3 is now extracted by calculating the in-
tensity

E ¼ ln
1

N
∑
N

i¼1
x2i

� �
ð1Þ

where E is the value of the envelope, N is the number of

Fig. 2 Block diagram depiction
of the developed hardware data
acquisition and processing system
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samples in the window, and xi is the ith sample in the window.
This type of envelope is especially suitable for detecting dif-
ferent sound events separated by silence, since the logarithm
quickly pushes towards very small negative values when no
sound is present. After that, a variable threshold is calculated
by applying a low-pass filter with a cutoff frequency at 2 Hz to

the envelope curve E3. All segments of E3 overshooting this
threshold are classified as sound events. In the next step, the
activity signal extracted from the IMU data is used to identify
events caused by motion artifacts. Here, events during which
the activity exceeds a defined threshold are marked as motion
artifact noise.

Fig. 3 Simplified flow chart
including all major steps of the
developed apnea detection
algorithm. The entire algorithm is
divided into the sections
preprocessing, drop detection,
and classification
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In order to apply the conventional definition of an apnea
(see Section 1) and distinguish between breathing and apnea,
the current level of normal breathing (reference) has to be
known. The particular importance of this step is emphasized
by the fact that the overall amplitude of the breathing sounds
can vary significantly over night, mainly dependent on
sleeping position. The next step of the process is therefore to
determine which of the previously detected events within the
extracted PAS are used as reference and which events have to
be classified in breathing and non-breathing events. This is
done by again employing a simple threshold operation on
the second, long-term envelope curve E2 from the previous
drop detection. All segments which underlie this threshold are
now defined as apnea segment (AS) and all segments over-
shooting this threshold are defined as reference segment (RS).

If the duration of AS is too short, the entire PAS is classified as
non-apnea and no further analysis is done. If this is not the
case, the single sound events are divided into so-called AS and
RS events and the processing continues.

The next step is to relate the amount of airflow to certain
features (i.e., amplitude) in tracheal soundswithin the detected
sound events. The relationship between airflow and breathing
sounds has been the subject of various studies [10, 22, 24],
resulting in the proposal of several methods to correlate the
two signals. In the presented approach, Eq. (1) is used to
calculate a feature value for every sound event. However,
before feature calculation, possible outliers in the individual
events are removed, similarly to process used in the drop
detection. This is important, because sound events during ap-
nea phases occasionally contain loud clicking noises of
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unknown physiological cause. Subsequently, the reference
level of normal breathing is computed by the median over
the feature values of all RS events (with exception of artifact
events). This makes the reference more robust against occa-
sional outliers caused by snoring, compared to the mean.
Now, it is possible to classify the AS events as breathing or
non-breathing events. Finally, any phase absent of breathing
(no sound event was detected or all AS events are classified as
non-breathing) which exceeds a duration of 10 s is marked as
an apnea phase.

2.3 Heart beat detection

Every physiological heart beat generates two distinct
peaks in the audio signal. In order to measure the heart
rate, one of these two peaks has to be detected. The key
steps of the algorithm can be seen in Fig. 6. The first
step in the estimation of heart rate is to bandpass filter
the audio signal with boundaries between 10 and 50 Hz.
This is particularly useful in removing any breathing
sounds and most artifacts from the raw signal, while
preserving the characteristic features of the heart sound,
i.e., distinctive peaks. However, during intense snoring
phases, the frequency bands of snoring and heart sounds
overlap each other, causing this method to fail.
Therefore, the signal is rejected during these particular snor-
ing segments. The resulting voids in the signal are handled
within the following steps of the heart peak detection.

For peak identification, all local maxima in the filtered
audio signal with a fixed minimal distance are detected.
Subsequently, all maxima falling below the 90th percentile
of samples taken from long-term windows are rejected. This
threshold is represented by the black line in Fig. 6. Based on
results reported in [1], it is assumed that the physiological
maximum variation in the time interval between sequential
heartbeats during sleep is 330 ms. Starting with the first de-
tected heartbeat, all forthcoming peaks lying within the limits
resulting from this assumption are considered as the next
heartbeat. From this collection, the peak with the highest am-
plitude is selected as the next heartbeat (see an example of this
procedure in Fig. 6). Using the newly chosen peak, the proce-
dure is repeated in search for the next peak. In case no peak
meeting the above mentioned assumption on peak distance
can be detected, a new heartbeat is created by taking the mean
time interval in between the last 10 heartbeats. This is obvi-
ously the case when the sound signal is rejected due to the
presence of disturbances such as snoring.

Finally, the heart rate (HR) in beats per minute (bpm) is
calculated using the marked audio peaks. The duration of a
window including 20 marked audio peaks is used to calculate
a single HR value. This window is shifted by 10 peaks for
every HR value.

2.4 Data acquisition

The PSG is considered gold standard for the diagnosis of ap-
neas and heart frequency during the night. For this study, data of
ten subjects was recorded at the University Hospital Ulm. All
subjects of the study were patients referred to the sleep center
with suspicion of sleep-related breathing disorders. The anthro-
pometric information of the subjects is shown in Table 1. The
study was approved by the ethics committee of the University
of Ulm and all subjects gave written informed consent. All
subjects underwent a full-night screening at the sleep laboratory
using PSG and the previously presented data collection system
in concurrence. Set up of the new system was done by the
medical staff after brief introduction and training. The follow-
ing parameters were monitored using PSG: EEG, EMG chin,
EMG leg, ECG, light, snoring, oxygen saturation (finger pulse
oximeter), thoracic and abdominal effort and airflow (therm-
istor flow sensor). All parameters were recorded using
SOMNOlab (Weinmann Geräte für Medizin GmbH + Co.
KG, Kronsaalsweg 40, 22525 Hamburg, Germany).

Applying the American Academy of Sleep Medicine
(AASM) 2007 standards, apneas are defined by ≥ 90% drop
of baseline flow with a duration of at least 10 s and at least
90% of the events duration meets the amplitude reduction
criteria [11]. After data recording, a trained technician applied
the AASM criteria to manually mark apneas using solely the
PSG thermistor airflow data. The soring technician was
blinded to the results of the new system. The MATLAB
Wavelet Toolbox and an R-wave detection algorithm [21]
were used to detect heart beats in the raw ECG signal recorded
by the PSG.

2.5 Evaluation of system performance

Apneas classified using the PSG are considered gold standard.
Accordingly, the performance of the developed apnea detec-
tion algorithm was evaluated by calculating sensitivity and
specificity as follows:

Specificity ¼ True Negative Apnea TNAtð Þ
True Negative Apnea TNAtð Þ þ False Positive Apnea FPAtð Þ

Sensitivity ¼ True Positive Apnea TPAtð Þ
True Positive Apnea TPAtð Þ þ False Negative Apnea FNAtð Þ

Whereas TNAt describes the amount of correctly classified
time absent of apnea, TPAt describes the amount of correctly
classified time of apnea, FNAt describes the amount of incor-
rectly classified time absent of apnea and FPAt describes the
amount of incorrectly classified time of apnea. Furthermore,
TPAn describes the number of correctly classified apneas and
FPAn describes the number of incorrectly classified apneas.

The ECG signal of the PSG was used to evaluate the per-
formance of the developed heart beat detection algorithm. To
compare audio and ECG-based heart rate, the same method
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for calculation of heart rate from single peaks was used (20
peaks with 10 peak shift). The agreement of bothmethods was
analyzed using correlation as well as Bland-Altman analysis.

3 Results

3.1 Apnea detection

The results of the developed apnea detection algorithm are
displayed in Table 2. Ten recordings with an overall duration

of 4185 min were evaluated. These consist of a total of 681
apnea events detected using PSG, ranging from 2 to 247 apnea
events per recording. The algorithm classified 630 apnea
events correctly (true positive) and 52 incorrectly (false posi-
tive). Considering correctly and incorrectly classified time in-
tervals a sensitivity of 92.8% and a specificity of 99.7% was
calculated. The deviation in the sensitivity of subject 4 stems
from the low total number of apnea events occurring (2 of 3
apneas classified correctly).

3.2 Hear rate detection

The results of the correlational and Bland-Altmann analysis
are shown in Fig. 7. The correlation analysis revealed that
audio HR was strongly correlated with ECG HR (coefficient
of determination r2 = 0.8164). The sum of squared errors
(SSE) was 4.5 bpm. Using Bland-Altman Analysis, a
mean ± 1.96 SD difference between audio HR and ECG HR
of − 1 ± 10 was calculated. The coefficient of variation (CV)
was 8.4%.

4 Discussion

A novel system including a fully functioning prototype capa-
ble of recording movement and body sounds for sleep moni-
toring was developed. The system consists of a device worn
by the user including a body soundmicrophone attached at the
neck and an IMU. Data is wirelessly transferred to a laptop
where the data is stored for subsequent offline analysis. The
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Fig. 6 Peak detection of typical
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Table 1 Anthropometric information of subjects

Subject
ID

Age Sex Weight
(kg)

Height
(cm)

BMI

1 71 M 91 181 27.8

2 41 F 98 168 34.7

3 72 M 130 181 39.7

4 57 F 80 163 30.1

5 37 M 110 186 31.8

6 43 F 123 173 41.1

7 83 M 78 165 28.7

8 58 M 110 185 32.1

9 57 F 80 160 31.3

10 56 F 59 165 21.67

ø
57.5 ± 1-
4.7

ø
95.9 ± 2-
2.4

ø
172.7 ±
9.8

ø
31.9 ±
5.7
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developed system is easy to set up and offers a high comfort
compared to conventional sleeping monitors. This was also
previously investigated in [12].

A method for extracting possible apnea events was
established and described. With a sensitivity of 92.8% and a
specificity of 99.7%, the algorithm shows a similar perfor-
mance in comparison to other sound-based methods [2, 4,
17, 25], confirming its capability to reliably detect apnea
events. This result was achieved by combining three unique
signal processing steps, utilizing both audio and movement
data to detect apnea events. During preprocessing, any heart
sounds and noise from the raw signal were removed. The drop
detection identifies possible apnea events by scanning the en-
tire signal for drops in breathing amplitude. During classifica-
tion, the previously extracted segments of possible apneas are
inspected in detail in order to distinguish between apnea and
non-apnea events. The movement data is used to facilitate this
process by using it to detect motion artifacts in the sound
signal.

Most mobile sleep monitors use thermistors to record air-
flow and thus detect apneas and hypopneas. However, it was
reported that using solely the thermistor method to measure
respiratory airflow provides poor results [5], since the therm-
istor fails to reliably detect nasal as well as oral breathing. In
contrast, breathing sounds recorded at the trachea are indepen-
dent of breathing route [17]. However, body sound recorded at
the trachea has been reported to be affected by the individual
anatomy of every patient [9]. Additionally, it can be observed
that the breathing sound amplitude can change with sleeping
position without altering the airflow. This makes the reliable
estimation of airflow from sound data challenging. Here, this
issue was resolved by constantly updating the reference for
normal breathing to distinguish between apnea and non-apnea
events. It has been shown that this method can compensate for
the change in breathing sound amplitude.

The main weakness of the algorithm is the lack of
hypopnea event detection. The Apnea-Hypopnea Index
(AHI) is one of the most important parameters used to quan-
tify the severity of sleep apnea and can therefore not be cal-
culated with the proposed method. Therefore, an appropriate
evaluation of the diagnostic capability of the developed sys-
tem is still pending. Full analysis of the PSG results which also
included hypopnea events revealed that the major part of false
positive apnea events in subjects 5, 8, 9, and 10 are
misinterpreted hypopnea events. The attempt to simply adjust
classification thresholds to distinguish between apnea and
hypopnea events was infeasible since it caused a high number
of false positive hypopnea events, especially in recordings
with less than 20 total apnea events. By AASM standards,
hypopneas are defined by at least 30% reduction in air flow
including an event-related arousal and/or more than 3% oxy-
gen desaturation [11]. Without information about oxygen
desaturation or arousals, the correct classification of
hypopneas is challenging. It has been shown that the feature
used for apnea detection is fit to distinguish between breathing
and non-breathing. However, this feature fails to detect a cer-
tain reduction in air flow. Therefore, other sound features are
needed in order to detect hypopneas in a reliable manner. In
the current study, the data simply failed to provide enough
distinct hypopnea events to develop and subsequently validate
a method for hypopnea detection. Therefore, further studies
will be necessary to investigate the sound properties during
hypopneas. In order to facilitate the hypopnea detection, cur-
rent research efforts in our group are directed towards the
integration of an oximetry sensor into the cone of the body
sound microphone. This would add another channel to the
system without affecting its current simple setup.

The detection and calculation of HR using the presented
method offer certain benefits. It is interesting to note that heart
sounds recorded at the neck are very dominant across all

Table 2 Results of apnea detection

Subject ID Apnea events PSG TPAn FPAn Duration (min) TNAt (s) TPAt (s) FNAt (s) FPAt (s) Sensitivity Specificity

1 35 32 1 464 27,105 721 47 12 93.9 99.9

2 14 13 2 434 25,777 227 20 25 91.9 99.9

3 2 2 4 230 13,712 42 0 46 100.0 99.7

4 3 2 5 417 24,915 35 18 65 66.0 99.7

5 247 230 18 460 22,469 4520 397 229 91.9 98.9

6 19 16 4 449 26,504 351 29 79 92.4 99.7

7 23 21 1 457 26,936 429 33 24 92.9 99.9

8 182 170 8 421 21,359 3631 219 103 94.3 99.5

9 102 96 5 411 22,092 2361 161 63 93.6 99.7

10 54 48 4 442 25,434 947 100 61 90.5 99.8

SUM 681 630 52 4185 236,303 13,264 1024 707 ø 92.8 ø 99.7

TPAn number of correctly classified apnea events, FPAn number of incorrectly classified apnea events, TNAt, correctly classified time absent of apnea,
TPAt, correctly classified time of apnea, FNAt, incorrectly classified time absent of apnea, FPAt, incorrectly classified time of apnea
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recordings. This finding, while preliminary, suggests that
heart sounds can easily be recorded independent of sex, age,
or BMI of the patient. However, there are limitations to this
method. During snoring episodes, heart sound extraction from
the recorded audio signal is severely disturbed. This may also
apply if the patient is talking or moving thus creating loud
noise within the audio signal. Therefore, heart rate is interpo-
lated during those sections. A fast change in heart rate may get
missed and other diagnostic relevant information like heart
rate variability cannot be calculated accurately. The results
of correlation and Bland-Altman analysis encourage these as-
sumptions. On the one hand, a high correlation between ECG
HR and audio HR can be observed. Furthermore, the bias is
very low and seems to be constant from 40 up to 100 bpm
ECGHR. On the other hand, audio HR tends to be low if ECG
HR is over 100 bpm. The mean ± 1.96 SD difference and
widely scattered outliers mostly reflect errors due to interpo-
lation. This leads to the general conclusion that calculation of
HR using tracheal audio is only suitable to give a reliable trend
of HR and long-term changes during the night.

The setup of the developed monitor was performed by
trained medical staff but without attendance of technicians.
There were no recordings where a significant amount of data
was lost or unusable. This finding illustrates the simple set-up
and suggests the applicability of the developed hardware in
home monitoring. Furthermore, unlike most ambulatory sleep
monitors, the developed system provides a heart rate monitor-
ing without the need for additional pulse oximetry or ECG
thus reducing wiring and the interference with the patient’s
sleep. It can therefore be suggested that using less sensors
leads to a better sleep quality and therefore to more reliable
results.

The present study holds several advantages and lim-
itations. Although all subjects were recruited with a
suspicion of sleep apnea, the PSG results covered the
entire spectrum from no to severe sleep apnea.
Additionally, the sex, age, and BMI distribution cover
a wide range of different individuals, suggesting that the

results are applicable to the general population.
Nevertheless, the number of subjects needs to be ex-
panded in future studies. Additionally, since it is of great
interest how the proposed system performs at home without
medical supervision, any future studies should be performed
in a home setting.

An unanticipated finding was that breathing as well as
snoring can be detected by visually inspecting the acceleration
and angular velocity data of the IMU. This is rooted in the fact
that any movements or vibrations of the chest are transferred
to the body device mounted there. This is an important finding
and should be addressed by future research. The IMU signals
could be utilized to facilitate the detection snoring and to
distinguish between obstructive sleep apnea (paused breathing
despite breathing effort) and central sleep apnea (paused
breathing without breathing effort). Additionally, it is possible
that this accumulation of physiological data can be used for an
expanded sleep analysis including sleep staging. Additional
research should be undertaken to investigate this suggestion.

5 Conclusion

It has been shown that the presented system is capable of
adequately detecting apneas in a clinical setting using a unique
detection algorithm. Novel features of the system in relation to
comparable methods are the utilization of movement data and
the capability to detect heart rate. By developing a fully func-
tioning prototype, it has been shown that the recording system
is highly reliable and more comfortable than existing ambula-
tory sleep monitors due to its minimalistic sensor setup.
However, the main shortcoming of the system is the missing
detection of hypopnea events, crucial for AHI estimation.
Future research efforts will focus on including the detection
of these events in the existing algorithms, as well as expanding
the current capabilities towards a more holistic sleep quality
assessment.
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