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Abstract. Modelling of the glucose metabolism for the purpose of improving the 
diagnosis and therapy of diabetes mellitus has been the subject of research for 
decades. Despite this effort, conventional models describing postprandial glucose 
profiles of healthy subjects fail to include the phenomenon of biphasic glucose 
responses. Continuous glucose monitoring data recorded from five healthy sub-
jects show that mono- and biphasic glucose responses from regular meals are 
equally common. We therefore developed a suitable parametric model, capable 
of producing mono- as well as biphasic meal responses. It is expressed by linear 
second order differential equation with a dual Gaussian input function. Addition-
ally, a simple method for classifying meal responses into mono- or biphasic pro-
files was developed. Model inversion was performed using a fully Bayesian 
method. R2 values of model output compared to CGM data was 91.6 ± 8.3 %, 
indicating the models ability of accurately describing a wide range of mixed meal 
glucose responses. Parameters were found to be associated with characteristics 
of individual meals. We suggest that the model could be used to objectively as-
sess postprandial hyperglycemia, one of the main measures for glycemic control.  

Keywords: healthy subjects, input function, postprandial glucose dynamics, 
system identification. 

1 Introduction 

Diabetes mellitus is one of the most common metabolic disorders and manifests itself 
by a failure of the body to regulate the concentration of glucose in the blood in a healthy 
range. In this context, various diagnostic and therapeutic methods rely on knowledge 
of the underlying mechanisms of glucose regulation. For that reason, mathematical 
modelling of the glucose metabolism in the healthy as well as the diabetic state has 
gained much attention in research over the past decades. Hereby, one of the main focus 
points has been the metabolism in a postprandial state, modelled with the help of cor-
responding profiles glucose and other substances, e.g. insulin. The level of biomedical 
detail incorporated into those models is thereby strongly dependent on the experimental 
data available for model identification [1]. 
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By analyzing postprandial glucose profiles from healthy subjects consuming mixed 
meals, i.e. meals containing carbohydrates as well as fat and protein, the occurrence of 
two distinct peaks rather than only one single peak in the profiles has been reported [2]. 
A similar effect has also been described with a pure glucose meal during an oral glucose 
tolerance test (OGTT) [3]. At present day, the occurrence of biphasic glucose responses 
has not been incorporated into models describing the postprandial glucose metabolism 
from mixed meals. Conventional models are only capable of producing monophasic 
(single peak) responses, including the well-established and highly influential simula-
tion model by Dalla-Man et al.[4]. In those models it is common to use various types 
of input functions to model the impact of food on the glucose concentration. These 
input functions can be an impulse (e.g. [5]), of trapezoidal/triangular shape [6] or be 
described by the general functional form 𝑡 = 𝑡 exp −𝑡  or 𝑡 = 𝑡 exp −𝑡  [7, 
8].  

In this paper we present a model capable of describing monophasic as well as bipha-
sic responses from mixed meals by introducing a type of input function, often used in 
the modelling of hormone secretion patterns [9]. The model was designed to be identi-
fied using only data from continuous, subcutaneous glucose monitoring (CGM). We 
demonstrate that the model possess enough flexibility to describe responses of greatly 
varying shape from different meals and that parameters of the model are related to the 
characteristics of the meal. Secondly we introduce a simple method for classifying meal 
responses as mono – or biphasic, based on similar process developed for sparsely sam-
pled glucose data during an OGTT [3].  

In doing so, we want to establish a method for objectively characterizing the post-
prandial glucose exposure under realistic conditions. Such a tool could be used to im-
prove the assessment of the overall state of glycemic control in individuals affected by 
diabetes mellitus.   

2 Methods 

2.1 Data Collection 

CGM data was collected from five healthy male subjects (Age: 26-47, BMI: 25.2-30.2 
kg/m2) undergoing inpatient monitoring at the Human Metabolism Research Unit at the 
University Hospitals Coventry and Warwickshire, UK. For that, the Freestyle Naviga-
tor 2 CGM system (Abbot Diabetes Care Inc., 1360 South Loop Road, Alameda CA, 
USA) providing a 10-min sampling period was utilized. After a sufficient sensor “warm 
up” period, 18 hours of consecutive glucose data, collected between 09:00 and 03:00 
the following day was recorded. During this time, subjects consumed a total of four 
meals and performed two 30 min periods of light stepping exercise at 12:30 and 16:30. 
The meals consisted of standard western menu items and were identical for all subjects, 
with only the amounts adapted to ensure an isocaloric diet. In detail, the share of calo-
ries from carbohydrates and the overall share of the total daily calorie intake in percent 
for each meal were as follows: breakfast (52 / 25), lunch (44 / 34), dinner (47 /26) and 
snack (74 / 15).  
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Prior to the study, appropriate ethical approval including the compliance with the 
Ethical Principles for Medical Research on Human Subjects set by Declaration of Hel-
sinki was granted (REC Reference: 13/WM/0327). 

2.2 Model Formulation 

The basis for the model formulation is formed by the fact that the metabolism of a 
healthy person attempts to maintain glucose homeostasis, meaning that an inflow of 
glucose to the blood from a meal and the subsequent rise in concentration is rapidly 
compensated by the endocrine system The model itself was adapted from previous pub-
lications [10, 11] and consists of a linear second-order differential equation with a 
novel, nonlinear input function: 

 𝑡 + 𝜃 𝑡 + 𝜃 𝑡 = 𝑡, 𝜃  (1) 

 0 =         0 =  (2) 

 𝑡 = 𝑡 +         ~ 𝑁 0, 𝜆  (3) 

 𝑡, 𝜃 = 𝜃√ 𝜋 𝑝 − 𝑡−𝜃 + 𝜃√ 𝜋 𝑝 − 𝑡−𝜃 . (4) 

The new external input function 𝑡, 𝜃  acts on the system describing the glucose con-
centration 𝑡 . In (3), the process of observing the CGM data 𝑡  is described as hav-
ing a Gaussian distributed measurement error ε with zero mean and standard deviation 
λ. In (1) the linear system behavior is governed by the evolution parameters θ1 and θ2 
with the initial conditions x01 and x02 being described in (2).  

The input 𝑡, 𝜃  is defined through the summation of two Gaussian distributions 
and introduces additional evolution parameters θ3 to θ6. By adapting these parameters, 
it is possible to induce both mono- and biphasic glucose responses from the model. It 
was designed to represent the biphasic process of glucose absorption. The first compo-
nent of (4) models an initial inflow of glucose from carbohydrates, whereas the second 
component describes mixed and delayed effects of carbohydrates, fat and protein in the 
food. The widths of the two components (corresponding to the standard deviation of a 
Gaussian) were chosen to produce sharp or flat responses, associated with carbohy-
drates or fat/protein, respectively [12]. This gives the model the ability to produce a 
wide variety of responses to different meals as can be seen in Fig. 1. 

2.3 Parameter Estimation  

Equations (1)-(4) specify a total of nine parameters that have to be estimated from the 
CGM data only. The two initial conditions in expression (2) were fixed, because the 
dynamics of the model are mainly driven by the input function and therefore have little 
effect on the model output. This leaves a total of seven unknown parameters, i.e. the 
evolution parameters θ1 to θ6 and the measurement error λ, to be identified during model 
inversion. For that, a variational Bayesian numerical method was employed. It is a fully 
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Bayesian method, allowing the identification of nonlinear models formulated with or-
dinary as well as stochastic differential equations [13]. By using Bayesian approach, all 
unknown parameters are characterized by probability distributions rather that fixed val-
ues. Furthermore, any existing information about the parameters can be included into 
prior distributions. The particular inference method has been proven to be useful and 
robust by past research [10, 14].  

Based on findings from a previous study [12] and the experimental schedule, the 
sections of CGM data under meal influence were extracted for each of the 20 recorded 
meals (see dashed vertical lines in Fig. 1). From that, the value of x01 was set to the first 
CGM value of the respective meal and x02 to the difference of the second and first 
measurement point. Additionally the offset of the CGM data was corrected by subtract-
ing a basal glucose concentration value estimated as average between the first and last 
measurement point of each meal. This is justified by the fact that baseline levels on the 
timescale of one peak can be considered constant. After that, all seven model parame-
ters were estimated for each individual meal.  

All prior distributions utilized existing information to a varying extend. The prior 
for the measurement error λ was set to in accordance with the experimentally derived 
value of 0.9 ± 0.8 mmol/L for the used CGM device [15]. The priors for the normally 
distributed evolution parameters (θ1 to θ6) were chosen to reflect physiologically sen-
sible ranges or based on previous findings with a similar model structure [10]. 

All derivations were done in MATLAB 2015b (The MathWorks, Inc., 1 Apple Hill 
Drive, Natick MA, USA). An implementation of the inference method is published as 
an open-source library of MATLAB functions [16]. 

2.4 Classification of Meal Responses 

The meal responses were classified according to the number of significant peaks within 
the response into the categories “monophasic” for one and “biphasic” for two peaks. 
Based on the previously mentioned publication by Tschritter et al. [3], the following 
criteria for detecting peaks were developed: a continuous rise in BG level by at least 
0.5 mmol/L or duration of 30 min and a subsequent continuous drop in BG level by at 
least 0.5 mmol/L or duration of 30 min. An automated algorithm applying these criteria 
to the meal responses was implemented.  

3 Results 

The quality of the model fit was evaluated using the coefficient of determination (R2). 
The overall mean and standard deviation for R2 are 91.6 and 8.3 %, respectively. An 
example of model output is given in Fig.1. The classification of the meal responses 
yielded and exact 50 % spilt between monophasic and biphasic.  

In order to increase the understanding in the inferred evolution parameters θ1 to θ6, 
they were transformed into the following, more meaningful quantities:  

 𝜏 = 𝜋√𝜃                = 𝜃√𝜃               𝛥𝑇 = 𝜃5 − 𝜃               𝛷𝐹 = 𝜃𝜃 . (5) 
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In (5), τ is the period of natural oscillation of the system in minutes and ζ the damping 
factor (dimensionless). ΔT describes the time difference between the two peaks of the 
input function in minutes and ΦF the ratio between the intensities associated with the 
peaks (dimensionless). 

 

Fig. 1. Top: example of model outputs with uncertainty. Bottom: plots of the respective input 
functions 𝑡, 𝜃 . The dashed vertical lines mark beginning and end of every meal period. Here 
breakfast and dinner were classified as monophasic responses, whereas lunch and the snack were 
classified as biphasic. 

Median values and interquartile ranges of all parameters grouped by meals are dis-
played in Table 1. The mean and standard deviation of λ over all responses are 0.32 and 
0.04 mmol/L, respectively.  

Table 1. Parameters grouped according to meals. Values are given as median [IQR]. 

Meal τ [min] ζ ΔT [min] ΦF λ [mmol/L] 

Breakfast 
136 

[116-146] 
0.61 

[0.37-0.67] 
67.6 

[62.4-81.2] 
1.55 

[1.02-1.80] 
0.37 

[0.30-0.39] 

Lunch 
193 

[124-205] 
1.09 

[0.81-1.93] 
94.2 

[86.9-97.2] 
2.11 

[1.44-2.36] 
0.29 

[0.28-0.34] 

Dinner 
126 

[94-135] 
0.46 

[0.41-0.55] 
50 

[39.7-2.9] 
1.3 

[1.11-2.38] 
0.32 

[0.32-0.33] 

Snack 
138 

[121-179] 
0.79 

[0.36-1.15] 
72.2 

[66.2-78.3] 
1.47 

[1.33-1.56] 
0.32 

[0.31-0.34] 

4 Discussion 

Our experiments confirm previous findings, regarding the biphasic nature of mixed 
meal glucose responses [2]. The classification results show that biphasic responses are 
as common as monophasic responses, justifying the premise of this work and the need 
to include this phenomenon in realistic models. Apart from that, the main contribution 
of this work is the addition of an input function to an otherwise established model, 
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allowing the description of a wide range of mono- and biphasic glucose responses. The 
functional form of two overlapping Gaussians is novel in the context of describing glu-
cose dynamics and enables a high degree of flexibility by allowing the adjustment of 
the intensity and the timing of the peaks.  

In Fig. 1 the capability of the model to accurately describe different degrees of bi-
phasic and monophasic responses is exemplified. The results from the analysis of R2 
values confirm this impression and show the model’s ability to fit the data well.  

Due to the small number of responses recorded per meal, the use of statistical testing 
in the analysis of parameters was intentionally forgone. Nevertheless, it is possible to 
infer information about the explanatory power of the model upon inspection of the pa-
rameters (Table 1). In comparison with other meals, the parameters τ and ΔT are in-
creased during lunch. This implies that the high overall calorie (34 % of total daily 
carbohydrate intake) and especially fat/protein content (56% of calories) could cause 
prolonged hyperglycemia. The same argument can be made for the damping parameter 
ζ, also being increased during lunch, compared to other meals. This suggests that these 
parameters are related to the food characteristics. On the other hand, the results of pa-
rameter ΦF do not clearly support the physiological interpretation of the input function 
as being related to the carbohydrate and fat/protein content of the food. Here, no simi-
larities between ratios of macronutrients in the food and ΦF were found. 

In terms of the measurement error λ, the inferred values (0.32 ± 0.04 mmol/L) lie 
well within the uncertainty limits reported in literature (0.9 ± 0.8 mmol/L) [15]. Addi-
tionally, the small standard deviation of λ is a sign of consistent model fitting. 

In terms of experimental design, the time difference between meals as well as the 
time difference between exercise and meal was short. This could have been a limiting 
factor in the modelling process due to overlapping effects of meals or meals and phys-
ical exertion. Additionally, the homogeneity and limited size of the study population 
hindered the explanatory power of results as well as the ability to relate the model pa-
rameters to physiological characteristics.   

Based on previous findings in our group [10], this work can be considered as a fur-
ther step towards our goal of improving the evaluation of glycemic control in people 
affected by diabetes mellitus. In particular, the model could be used to objectively as-
sess postprandial hyperglycemia, one of the main measures for glycemic control [17]. 
Future experiments will focus on isolating the effects of different macronutrients and 
include subjects with different stages of impaired glucose tolerance and DM type 2.  
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