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Abstract

Type 2 diabetes mellitus and its preliminary stages are characterised by chronically

elevated blood glucose levels, particularly after food intake. Assessing the postprandial

glucose metabolism is, therefore, crucial to facilitate appropriate treatment strategies

such as dietary interventions. This thesis develops mathematical models for the de-

scription of glucose profiles in response to food intake using glucose data alone. These

glucose-only models thereby overcome the necessity of measuring insulin which is labo-

rious and unreliable, thus enabling their widespread use in clinical practice. The main

purpose of the developed models is the extraction of information on insulin sensitivity

and meal-related glucose appearance, both of which have a significant influence on the

postprandial glucose response. The extracted information is validated against the re-

sults from the established oral minimal model requiring both glucose and insulin data

for identification. For both oral minimal and glucose-only models, this work proposes

a novel input function for the description of the meal-related glucose appearance. This

new function is fully differentiable and more suitable for modelling consecutive meal

responses on the same day in comparison to the conventional but highly impractical

piecewise-linear function. The models are identified from both a literature dataset and

a dataset collected during an experimental study designed and conducted in the context

of this work. The latter includes subjects with normal glucose tolerance, prediabetes

and type 2 diabetes mellitus and features the use of continuous glucose monitoring.

The model identification procedure is carried out using a variational Bayesian tech-

nique, which offers an efficient method for the probabilistic treatment of the parameter

estimation task. The results demonstrate that the developed glucose-only models can

be used to infer information on insulin sensitivity as they contain a parameter highly

correlated to the insulin sensitivity inferred from the established oral minimal model.

Furthermore, it is shown that the glucose appearance profiles inferred from the glucose-

only models allow the same interpretation of trends in glucose appearance with respect

meal composition as the oral minimal model. Using the information on insulin sen-
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sitivity and glucose appearance, the developed models could thus support healthcare

professionals in designing effective treatment strategies such as dietary interventions

and monitor the disease progression from prediabetes to type 2 diabetes.
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Chapter 1

Introduction

1.1 Overview

Glucose is the main source of energy for the human body. In a healthy person, its con-

centration in the blood is maintained within a very narrow range by a complex control

system. One of the key components in this system is a hormone called insulin. Any

impairment to its action or production typically lead to abnormally high blood glucose

(BG) levels, which is the main characteristic of a group of diseases referred to as dia-

betes mellitus. One specific subgroup called type 1 diabetes mellitus (T1DM) is caused

by a lack of insulin production and treated with the lifelong administration of external

insulin. The largest share of patients, however, belong to the subgroup of type 2 dia-

betes mellitus (T2DM), where a combination of impaired insulin action and production

causes the glycaemic derangement. This disorder typically develops over the course

of several years with earlier stages known as prediabetes (Pre-DM). In the UK alone,

over three million people are living with T2DM and the number of people affected by

Pre-DM and T2DM is steadily growing. If BG levels are not controlled within a healthy

range, the resulting complications can have a large impact on a person’s wellbeing and

society as a whole [1]. Due to its increasing prevalence and the sheer amount of people

affected, this thesis will specifically focus on T2DM.

The treatment for all types of diabetes including T2DM, has the goal of maintaining

BG levels in a healthy range to avoid short and long-term complications. In T2DM

this can be achieved by pharmacological interventions accompanied by lifestyle mod-

ifications in the form of recommendations on diet and physical activity. Changes in

lifestyle are particularly effective in people with Pre-DM, as they can significantly delay

1
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or even prevent the progression to T2DM [1–3]. One shortcoming of current treat-

ment strategies is that the majority of pharmacological treatments are most effective

in resolving basal hyperglycaemia, i.e. escalated levels of glucose in the fasted state

[4]. However, in better controlled T2DM patients, the overall glycaemic state is mainly

determined by hyperglycaemia in the fed (postprandial) state [5]. This limitation calls

for more treatments specifically targeting postprandial hyperglycaemia, such as dietary

interventions [4, 6], requiring appropriate tools to accurately assess the postprandial

glucose metabolism in clinical practice.

Due to its importance in the context of diabetes, glucose metabolism has been the

subject of research across several disciplines. One of these disciplines is the field of

dynamical systems modelling. It has greatly contributed to the knowledge and under-

standing of glucose metabolism by providing the necessary tools to address its inherent

complexity [7]. This complexity is manifested by several nonlinear and time-varying

effects present within and across all levels of physiology (e.g. cellular, organ, whole

body). The general modelling approach approximates the real system by formulating

a set of simplified mathematical rules and constraints, called the mathematical model.

The degree of simplification and therefore the scale of the model is mainly determined

by the purpose of the modelling task. Generally speaking, models can be used to de-

scribe, predict, interpret or explain different aspects of glucose metabolism that would

be difficult or even impossible to measure directly [8].

In the context of glucose metabolism it is common to distinguish models according to

their intended use into minimal and maximal models [7], also referred to as clinical and

non-clinical models [9]. As the name suggests, maximal or non-clinical models provide

a fine-grained description of all relevant parts of the glucoregulatory system and are

developed for simulation purposes without the intention of describing measured data.

The term minimal-type model is specific to the field of glucose dynamics modelling and

was coined by Cobelli et al. [7] to describe more coarse-grained models that contain less

detail and aim for a parsimonious description of the system’s functionality. The key

feature discriminating them from maximal models is that they are strongly informed

and subsequently validated by the collection of experimental data in a clinical context

such as a diagnostic test. This allows the clinical interpretation of the collected data

and increases the understanding of the individual system [7, 9].

In this thesis, we will adopt a minimal-type modelling approach aiming to be relevant
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in clinical applications and focus on postprandial glucose metabolism, i.e. the metabolic

response to food intake. This approach to modelling allows individual inference of the

meal-related appearance of glucose in the bloodstream and the quantification of insulin

action on glucose metabolism. Both of these quantities have a significant influence on

the postprandial glucose response and thus determine the extent of postprandial hyper-

glycaemia. Information on these quantities is thus of high clinical relevance and can

be applied to accurately characterise postprandial glucose metabolism, the demand for

which has been highlighted earlier. The so developed methods can support healthcare

professionals in designing effective treatment strategies such as dietary interventions or

the monitoring of disease progression from Pre-DM to T2DM.

1.2 Problem statement

Over the past decades, minimal-type models have become increasingly sophisticated.

This development has been mainly driven by the steady improvement in experimental

techniques, allowing researchers to capture a growing amount of physiological processes,

leading to increased model complexity without sacrificing the connection to experimen-

tal data [7]. This trend started by only measuring glucose and insulin concentrations

[10] and led to the use of traced glucose, i.e. molecules of glucose containing radioactive

isotopes of either carbon or hydrogen [11]. Other models have been developed to study

brain glucose metabolism and are based on data from magnetic resonance imaging [12].

The current practice in the development of minimal-type models for the description of

the postprandial glucose metabolism in normal glucose tolerance (NGT) and T2DM

is to utilise at least glucose and insulin data [7, 13, 14]. This is a very active field

of research and has greatly contributed to the general understanding of the underlying

metabolic processes responsible for the loss of glycaemic control in the context of T2DM

[7].

Despite this progress, the application of any of the proposed models in clinical prac-

tice, i.e. for the diagnosis or treatment of individuals, has yet to be seen. While

minimal-type models can theoretically be used for this purpose, the lack of clinical ap-

plication is mostly attributed to the large effort associated with insulin data collection

for model and parameter identification. This makes current minimal models unsuitable

for widespread use in clinical practice because the measurement of insulin concentrations
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is dependant on venous blood sampling, which can be expensive and unreliable due to

missing standardisation in measurement techniques. The determination of insulin levels

is thus not part of any clinical routine in the diagnosis or treatment of T2DM [15] and

impossible outside a clinical setting. In contrast to that, the techniques for the reliable

and straightforward collection of glucose data, even outside the hospital, have steadily

improved. This has led to a persistent increase in the amount of glucose data available

to healthcare professionals. Especially important for this development has been the im-

proved accuracy and reduced cost of devices for continuous glucose monitoring (CGM),

commonly utilised in research and increasingly used in the management of T2DM [16–

18].

Apart from the dependence on insulin data, a further weakness of current minimal-

type models is that they are mainly developed for the description of glucose responses

to a single, isolated meal from a fasted state, often consisting of pure carbohydrates

[7, 9]. This form of meal consumption is, however, unrepresentative of the behaviour

occurring in everyday life, making it desirable to have models capable of describing glu-

cose responses under more realistic conditions. These conditions mean that the meals

contain additional macronutrients such as fat and protein, have varying composition

and are consumed at different times of the day.

To overcome the described weaknesses of minimal-type models, this thesis will be

concerned with the development and validation of models that can be identified by only

measuring glucose profiles capturing a variety of meal responses under realistic condi-

tions. The exclusive use of glucose data is already a common feature of minimal-type

models for T1DM or advanced stages of T2DM, where no or very little endogenous in-

sulin is produced. In these cases, the vast majority of insulin is administered externally,

meaning that crucial and easily attainable data on insulin action can be used during

model identification [14, 19]. In contrast, the models developed in this thesis will focus

on the NGT, Pre-DM and a non-insulin dependent T2DM state, where no insulin is ad-

ministered externally. This lack of data on insulin action poses an additional challenge

from a modelling perspective as it greatly reduces the amount of available information

during the modelling process. However, it also gives the models greater potential for

application because the majority of T2DM patients, about 70 % according to Wilke et

al. [20], are not treated with insulin.

A comparatively small number of glucose-only models for the description of glucose
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profiles in NGT and T2DM subjects have already been published. One subset of these

models is formulated in such a way that their states and parameters are difficult to

interpret physiologically [21–25]. Other models have a physiological interpretation, but

their application to real data has been limited to a few subjects and they yielded a

poor description of the data [26, 27]. A detailed review of these models will be given in

Chapter 6.

Within the overall modelling approach, the process of model identification is of crucial

importance. It involves a structural identifiability analysis, the estimation of param-

eters and the comparison between models if multiple candidates are considered. Due

to the use of a minimal amount of data, the choice of the most appropriate approach

for model identification is important. In terms of the parameter estimation problem,

the vast majority of existing glucose-only modelling approaches employ a frequentist

approach [21–23, 26, 27], meaning that it is assumed that every parameter can be rep-

resented by a single value. This makes it difficult to incorporate prior knowledge into

the parameter estimation which is essential when a minimal amount of data are used.

It also hinders the quantification of the uncertainty associated with the estimated pa-

rameters and model states. In contrast, Bayesian approaches assume the parameters to

be random variables [8]. These methods overcome the previously described weaknesses

of frequentist approaches and are most suitable when a minimal amount of data are

available. They additionally provide a comprehensive framework to combine the results

of multiple model candidates into a single set of estimates.

1.3 Aim and objectives

The aim of this thesis is to develop minimal-type models for the description of post-

prandial glucose responses in NGT, Pre-DM and T2DM subjects that can be identified

from glucose data only. The key novelty of the utilised approach is that the model

development and validation will be greatly informed by comparison with established,

physiologically-based models using glucose and insulin data. This ensures that result-

ing glucose-only models are physiologically interpretable and can describe the glucose

dynamics with similar accuracy, overcoming the weaknesses of current glucose-only mod-

elling approaches. It will also ensure that the extracted, clinically relevant information

on insulin sensitivity and the meal-related appearance of glucose is valid. The overall
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aim of this thesis can be divided into the following objectives, splitting the modelling

process into several parts.

The first objective is to procure suitable datasets for model development and identi-

fication, fulfilling several requirements. The datasets should: (1) contain both glucose

and insulin data, (2) record multiple meal responses on the same day from meals of vary-

ing composition and (3) contain data from subjects with varying degrees of glycaemic

control. A dataset from the literature fulfilling criteria (1) and (2) was available but did

not include data from subjects with Pre-DM and T2DM. This demands the design and

implementation of a new experimental study, forming a large share of the first objective.

The second objective is to select and adapt a minimal-type model requiring both

glucose and insulin data. To apply the previously procured datasets to the selected

model, two novel adaptations will be proposed: (1) a procedure for model identification

from non-fasting conditions will be introduced and (2) a new function for the description

of the meal-related appearance of glucose will be proposed. This is necessary because

the standard, piecewise-linear description of glucose appearance is highly impractical

for describing consecutive meal responses of different durations on the same day. The

results of this objective will serve as a basis and validation reference for the subsequent

development of glucose-only models.

The third objective sets out to develop novel, glucose-only models, based on the pre-

viously selected minimal-type model. This means that the lack of insulin data has to

be compensated for by a suitable, mathematical description of the relationship between

glucose and insulin concentrations. This description will be informed by examining

the relationship between postprandial glucose and insulin levels as well as physiological

principles, and lead to the proposal of multiple model candidates.

The fourth objective is to carry out the process of model identification on the models

resulting from the second and third objectives using a fully Bayesian approach. The

model selected in the second objective will be identified using glucose and insulin data.

Subsequently, the developed glucose-only models will be identified using only the glu-

cose data from the same subjects and meal responses. This allows the direct validation

of the glucose-only models concerning their ability to provide the same information and

will inform on the comparison between model candidates.
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The fifth and final objective is to offer fundamental insight for clinicians on the effects

of meal composition and timing, sex and status of glycaemic control on postprandial

glucose metabolism.

1.4 Thesis structure

Chapter 1 has given an overview of the topic, highlighted the weaknesses of current mod-

elling concepts and outlined the approach taken in this thesis through the formulation

of the aim and objectives. Chapter 2 provides the necessary background information

on the relevant physiology, measurement principles and will select the most suitable

minimal-type model requiring both glucose and insulin data. Chapter 3 introduces the

methods used for model development and identification with particular emphasis on

parameter estimation techniques and their application to the models used in this thesis.

Chapter 4 deals with the adaptation and identification of the model selected in Chap-

ter 2, using the already existing dataset. Chapter 5 introduces, selects and validates a

novel function for the description of the meal-related appearance of glucose. Chapter

6 is concerned with the development and validation of glucose-only models from the

existing dataset. Chapter 7 provides a description and preliminary analysis of the data

collected in the context of this thesis. Chapter 8 then uses this dataset to validate the

models developed previously. Chapter 9 concludes this thesis by summarising the most

important findings with respect to the aims and objectives described earlier and gives

an outlook to future works.



Chapter 2

Background

The following chapter describes the necessary background information on the relevant

physiological principles and measurement techniques for glucose and insulin. At the

end, the minimal-type glucose-insulin model used as a reference for the development of

glucose-only models is selected.

2.1 Physiology

2.1.1 Glucose and insulin metabolism

Glucose is continuously present in the human blood at a normal concentration of around

5 mmol/L, forming a total mass in the bloodstream of circa 4.5 g. In the normal phys-

iological state, glucose levels are tightly regulated by a balance of glucose production,

mainly by the liver, and uptake of glucose by the muscles and brain. The efficacy of

this control mechanism can be exemplified by considering that the glucose content, say

100 g, of a typical meal, would be enough to increase the blood glucose (BG) levels

by more than twentyfold. In actuality, however, the concentration is temporally only

approximately doubled before returning to pre-meal levels [28].

One of the main regulators responsible for this tight control mechanism is the hor-

mone insulin. It is constantly synthesised in the pancreas by beta-cells with its secretion

rate being highly dependent on glucose levels. The secreted insulin, in turn, acts on

the glucose metabolism by two main mechanisms: insulin suppresses glucose production

by the liver as well as the release of glucose storages in other tissues and it promotes

the uptake of glucose in the liver, skeletal muscle and adipose tissue. This means that

insulin has a hypoglycaemic effect, i.e. it leads to a decrease in BG levels and that

8
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almost all tissues need insulin to utilise the glucose in the bloodstream. The exception

is the central nervous system, which is capable of utilising glucose independently from

insulin and consumes a significant fraction of circulating glucose (circa 120 g per day).

Additionally, BG levels alone are also known to affect glucose metabolism [28]. Given

the relationship between glucose metabolism and insulin action, it should come as no

surprise, that glucose and insulin concentrations are associated, with one of the main

drivers of dynamic behaviour being the consumption of carbohydrate (CHO) containing

meals. This association is exemplified in Figure 2.1, where glucose and insulin concen-

trations show similar excursions in response to CHO intake.

Figure 2.1: Glucose and insulin concentrations in a subject with normal glucose toler-
ance over the course of 12 hours consuming three identical meals (dashed lines), showing
the tight association between glucose and insulin concentrations. The data were taken
from a study by Nuttall et al. [29] and are utilised in Chapters 4, 5 and 6.

2.1.2 Diabetes mellitus

Diabetes mellitus - often shortened to just diabetes - is a group of metabolic diseases

manifested by chronically elevated glucose concentrations in the blood. The name di-

abetes mellitus literally means honeyed siphon, which is a graphic description of the

disease’s main symptom: the passing of large quantities of sweet-tasting urine in or-

der to counteract the elevated glucose levels through renal clearance of excess glucose.

This state is called hyperglycaemia and is caused by defects in insulin secretion, action

or both, therefore disturbing the regulation of glucose metabolism. Chronic hypergly-

caemia is associated with a variety of complications including the destruction of the

retina, kidneys and peripheral nerves, as well as heart disease and stroke [1]. The goal

for any treatment strategy in diabetes is therefore to maintain BG levels in a healthy
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range, which has been shown to significantly reduce the risk of developing the afore-

mentioned complications [30].

Diabetes is generally classified into the categories type 1, type 2, gestational and

other specific types. The latter refers to a wide range of relatively uncommon diseases

causing diabetes-like symptoms by either affecting insulin secretion or action. Ges-

tational diabetes mellitus leads to hyperglycaemia caused by a lack of insulin action

first detected during pregnancy and typically resolves after childbirth. Type 1 diabetes

mellitus (T1DM) is caused by the autoimmune destruction of beta-cells, leading to an

absolute lack of insulin production. It most commonly presents in young children and

adolescents and is treated through the lifelong external administration of insulin to reg-

ulate BG levels in a healthy range [1].

The main focus of this thesis is type 2 diabetes mellitus (T2DM), by far the most

prevalent form of diabetes, accounting for about 85 % of all diabetes cases. It is con-

sidered to be one of the most common chronic diseases overall, affecting an increasing

amount of people. T2DM is a heterogeneous, progressive disease, caused by the inter-

action of genetic and environmental factors, such as obesity and old age. In general,

however, the deterioration in glycaemic control in T2DM is driven by a decline in beta-

cell function as well as impaired insulin sensitivity, i.e. the capacity of the liver, adipose

tissue and muscles to respond to the effects of insulin (more details on that are pre-

sented in the following section). This means that, in contrast to T1DM patients, a large

number of T2DM patients have a significant amount of residual beta-cell function [1].

Studies [31–33] have shown a hyperbolic relationship between insulin sensitivity and

beta-cell function, as depicted in Figure 2.2. This means that glucose tolerance can be

characterised by a range of high insulin sensitivity and low beta-cell function and low

insulin sensitivity and high beta-cell function. Additionally, NGT, Pre-DM and T2DM

subjects typically populate three distinct hyperbolas. The figure also demonstrates that

the progression of the disease is mainly determined by the ability of beta-cells to react

to a decrease in insulin sensitivity [1].

T2DM is typically diagnosed through the measurement of glycated haemoglobin

(HbA1c) which represents an average BG level over the previous 2-3 months, therefore

indicating the presence of chronic hyperglycaemia. Alternatively, an oral glucose toler-

ance test (OGTT) can be performed which involves the consumption of 75 g of glucose

in liquid solution after an overnight fast. The fasting BG level, as well as the BG level
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Figure 2.2: Schematic depiction of the hyperbolic relationship between beta-cell func-
tion and insulin sensitivity in T2DM, prediabetes (Pre-DM) and normal glucose toler-
ance (NGT). The arrows indicate possible disease progression routes resulting from a
decrease in insulin sensitivity [1].

2 hours after the test, are then used for diagnosis [34] (see Table 2.1). Since there is

a large gap between what is considered normal glucose tolerance and T2DM, both in

HbA1c and OGTT results, the term prediabetes (Pre-DM) has been introduced. It

encompasses several subclinical stages of abnormalities in glucose regulation before the

manifestation of T2DM, but does not require immediate clinical intervention. People

classified as having Pre-DM have a significantly increased risk of developing T2DM in

the future, with about one-third of people eventually progressing to T2DM [1].

Table 2.1: Criteria for the diagnosis of Pre-DM and T2DM based on OGTT results
and HbA1c [34]

NGT Pre-DM T2DM

Fasting BG level [mmol/L] ≤ 5.5 5.6 - 6.9 ≥ 7

2h OGTT BG level [mmol/L] ≤ 7.7 7.8 - 11 ≥ 11.1

HbA1c [mmol/mol] ≤ 38 39 - 47 ≥ 48

The treatment for all diabetes types has the goal of maintaining glucose levels in

a healthy range to avoid complications associated with chronic hyperglycaemia. In

T2DM, these treatments encompass pharmacological interventions using oral antihy-

perglycaemic drugs and the external administration of insulin, possibly in combination

with the drugs. Additionally, all treatment strategies are accompanied by lifestyle mod-

ifications in the form of recommendations on diet and physical activity. These lifestyle
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intervention strategies are particularly effective in people with Pre-DM, as they can

significantly delay or even prevent the progression to T2DM [1–3].

2.1.3 Insulin sensitivity

The concept of insulin sensitivity will play an important role in this thesis, thus warrant-

ing a more detailed look into this particular topic. As mentioned in the previous section,

the term insulin sensitivity (IS) describes the body’s ability to react to the effects of

insulin by inhibition of endogenous glucose production and stimulation of glucose util-

isation. Measuring these effects separately is difficult, so IS usually describes the net

result of these two mechanisms, i.e. the overall hypoglycaemic effect of insulin. This

only considers the pure biological effect of insulin and excludes the action of glucose on

its own metabolism described in the previous section, called glucose effectiveness. In

mathematical terms the insulin sensitivity can, therefore, be expressed by the following

relationship:

IS =
∂

∂I

[
∂GCR

∂G

]
, (2.1)

where I and G denote the insulin and glucose concentrations, respectively and GCR

the rate of glucose clearance from the bloodstream. The derivatives account for the fact

that IS theoretically can differ depending on the concentration of insulin [35].

The most commonly used direct method for determining IS is an experimental pro-

cedure called hyperinsulinemic euglycaemic clamp (HEC) first established in 1979 by

DeFronzo et al. [36]. To this day, it is considered to be the gold standard and involves

the following procedure: exogenous insulin is infused until an artificially high plateau

is reached. To counteract the resulting hypoglycaemia, glucose is infused simultane-

ously at an adjustable rate until BG levels and glucose/insulin infusion rates are stable.

Under these steady-state conditions, the glucose clearance rate is equal to the (known)

glucose infusion rate and expression (2.1) can be applied to directly determine IS [35, 36].

Due to the high experimental effort of the HEC procedure, several alternative meth-

ods for determining surrogate indices of IS have been put forward. These methods use

experimental procedures such as the intravenous injection of glucose, termed an intra-

venous glucose tolerance test (IVGTT), the OGTT, or only measuring fasting glucose

and insulin concentrations. Reviewing these well established methods in detail lies be-

yond the scope of this thesis and the reader is referred to several existing reviews [35,
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37–39]. In general, the correlation of the proposed indices with HEC measurements,

as well as amongst each other varies between values of 0.4 and 0.9 dependent on the

method used, but also the considered subject population, where NGT subjects typically

display the highest agreement.

One commonality of almost all methods of IS determination is that they require the

measurements of both glucose and insulin, with the exceptions being the following two

methods. The first method proposes the dynamic insulin sensitivity test, which requires

the intravenous injection of glucose and insulin to mimic the beginning of an HEC test.

Using this method it was found that the glucose levels alone in the first 30 min of the

test can be used to predict IS with a correlation of around 0.75 in comparison to HEC

results [40]. The second approach proposed by Yates and Watson [41] uses both glucose

and insulin and then only glucose data to estimate an IS parameter in the same model

proposed by Watson et al. [42], making it similar to the approach used in this thesis.

The main difference arises from the fact that a dataset containing IVGTT responses

partially collected from rats is utilised, whereas this thesis will utilise postprandial glu-

cose responses collected solely from human subjects.

2.1.4 Meal-related appearance of glucose

Besides insulin sensitivity, the meal-related appearance of glucose will form the second

physiological quantity of interest in the modelling process, thus warranting a more de-

tailed look into this particular topic. The postprandial rate of glucose appearance (GA)

represents the speed at which glucose appears in the peripheral blood circulation after

the consumption of a meal containing CHO and is a major determinant of the post-

prandial glucose response. A typical GA profile consists of an initial rise commencing as

soon as 10 min after meal consumption, reaching a maximum and followed by a gradual

decrease thereafter, as depicted in Figure 2.3 [43]. GA can be determined in elaborate

experiments involving the simultaneous ingestion and infusion of traced glucose, i.e.

molecules of glucose containing isotopes of either carbon (13C) or hydrogen (2H, 3H).

Based on the measured concentrations of the differently marked glucose masses in the

peripheral veins and underlying models of glucose kinetics, the GA can be calculated

[11, 44].

Despite this laborious procedure, GA has been examined by a large number of stud-



Chapter 2. Background 14

Figure 2.3: Averaged profile and range of variability of postprandial glucose appear-
ance from 88 NGT subjects consuming a normal meal, as measured using traced glucose
[45].

ies in a variety of contexts. For example, differences between healthy and subjects with

T2DM could not be found [46, 47]. As demonstrated in Figure 2.3, GA profiles can

undergo large variability, which could possibly be explained by the variability in gastric

emptying [48], i.e. the passing of processed foods from the stomach in the small intes-

tine. A more detailed review of the existing approaches to model GA will be provided

in Chapter 5.

A particular feature of the time profile of GA is the existence of a shoulder after

the initial peak (see Figure 2.3). A definite physiological cause for this effect has not

been established, but it is suspected that it is related to the biphasic nature of gastric

emptying [45, 49–51].

2.2 Insulin and glucose measurement

A major part of this thesis is the model-based analysis of insulin and glucose profiles.

In this section, the methods for measuring insulin and glucose are reviewed.

2.2.1 Insulin measurement

The hormone insulin was first isolated in 1927 and the first immunoassay for insulin

measurement was developed in 1959. Today the measurement is based on the same prin-

ciple, namely reacting insulin in a blood sample (serum or plasma) with an antibody,

producing a measurable signal in response to the binding. The quantity of that signal,

e.g. an observable colour change, is then measured and related to the insulin concentra-

tion by measuring the same signal from a reference standard of known concentration [15].
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Despite long-standing efforts to standardise this measurement technique across meth-

ods and laboratories [52], an acceptable level of standardisation has not yet been

achieved [15, 53]. This has been demonstrated by studies comparing measurement

results across different measurement techniques (assays) detecting a maximum of 2-fold

[54] and 1.8-fold [55] difference across assays. Another issue is that even the conversion

factors between insulin units (pmol/L and mU/L) are not agreed upon [54, 56, 57].

This leads to the issue that any results involving the use of absolute insulin concentra-

tions, e.g. several surrogate indices for insulin sensitivity, are only comparable within

the study cohort, measured with the same insulin assay, a fact that is often ignored

[35]. This makes it very difficult to translate and compare results across studies which

prevents any meta-analysis or the establishment of standards and diagnostic thresholds

for these measures. This explains the fact that the measurement of insulin is currently

limited to research purposes and not part of any clinical practice, despite the important

role of insulin in the development of diabetes [15, 58].

2.2.2 Glucose measurement

In contrast to the issues in the measurement of insulin, the determination of blood glu-

cose concentrations is established as a crucial tool in the diagnosis and management of

diabetes [1]. There are different means for glucose measurement available that mainly

vary in the purpose of measurement and therefore accuracy requirements. Three of

these methods will be introduced in this section as data from them have been utilised

in this thesis. All three methods are based on similar measurement principles and ini-

tially involve reacting the glucose in a blood sample with a specific enzyme (e.g. glucose

oxidase). Subsequently, the by-products of this reaction, which are proportional to the

glucose concentration, are detected. This can be achieved by detecting a colour change,

by spectroscopy or more frequently by the measurement of a current in response to a

voltage [59].

The most accurate glucose measurements can be obtained from laboratory devices

using blood plasma, typically sampled from a peripheral vein (Figure 2.4 (a)). They are

currently recommended for the diagnosis of T2DM in the context of an OGTT [58] and

are used for research purposes when glucose and insulin are measured simultaneously.

The most common form of blood glucose measurement is conducted using handheld,



Chapter 2. Background 16

point-of-care devices, also known as the self-monitoring of blood glucose (SMBG) or

finger-prick devices. As the latter name suggests, the measurement procedure involves

the acquisition of a small capillary blood sample through a puncture in the fingertip

and the subsequent application to a test strip (Figure 2.4 (b)). These devices provide

the result within seconds and are factory calibrated to display the equivalent of venous

plasma concentration. They are mainly intended for home use in patients with T1DM

or T2DM administering external insulin [58, 60].

Figure 2.4: Examples of (a) laboratory glucose measurement device1, (b) self-
monitoring of blood glucose (SMBG) device2, and (c) continuous glucose monitoring
(CGM) device coupled with a smartphone3.

The last means of glucose measurement to be introduced here are devices for contin-

uous glucose monitoring (CGM), commercially available since the early 2000s. These

devices automatically provide glucose measurements every 5-15 min, over a period of

7-14 days, both dependent on the device. This is achieved by placing a glucose sensor

into the interstitial fluid (ISF) underneath the skin, which is then connected to a small

device worn on top of the skin (Figure 2.4 (c)). The actual BG level is then estimated

from the ISF glucose level. In most device types, this requires the periodic calibration

with SMBG results (2-5 times per day), but the trend is moving toward factory cali-

brated devices not requiring user calibration at all. CGM devices are used for two main

purposes. On the one hand, there are devices capable of displaying results in real-time,

for the purposes of immediate therapy adjustment and hypoglycaemia detection. These

devices require a secondary handheld device or smartphone to display results (Figure
1Image source: https://www.ysi.com/2500 (Last access October 2020)
2Image source: http://www.wisegeek.net/how-do-i-choose-the-best-flash-glucose-meter.htm (Last

access October 2020)
3Image source: https://www.diabetesdaily.com/learn-about-diabetes/technology/tbw-how-to-use-

a-cgm/all-about-the-medtronic-guardian-connect-continuous-glucose-monitor-cgm/ (Last access Octo-
ber 2020)
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2.4 (c)) and are increasingly used in the management of T2DM. On the other hand,

CGM devices can be blinded to the patient and be used for retrospective analysis of

BG levels in the context of long-term therapy adjustment [16, 18, 61].

The accuracy of CGM systems remains a challenge and is typically assessed using

the difference between CGM and SMBG readings, with values ranging from 8 to 15 %.

Additional to the measurement error, ISF glucose levels typically lag behind actual BG

levels with a delay of between 4 and 27 min, highly dependent on the rate of change

of BG levels [61, 62]. Furthermore, it has been suggested that ISF glucose levels are

additionally distorted [63], possibly resulting in the attenuation of high-frequency com-

ponents in the BG signal. Nevertheless, the ongoing improvements in CGM technology

have made this method of glucose measurement increasingly favoured in clinical practice

and research [17].

Apart from the well established and minimally-invasive CGM technolgy described

earlier, there exist several alternative approaches for continuous glucose measurement,

e.g. microneedles inserted underneath the skin in the context of a watch type device.

Furthermore, non-invasive methods based on fluorescence or spectroscopy are currently

under development. However, the majority of these approaches have not been released

commercially or their application in practice is very restricted, mainly due to their

limited accuracy [64].

2.3 Minimal-type models for the postprandial

glucose metabolism

A major part of the second objective formulated in the introduction to this thesis is

the selection of an appropriate minimal-type model that will form the basis for the

development of glucose-only models. The selected model should

• Contain identifiable parameters from glucose and insulin responses to OGTTs or

mixed meals, i.e. meals containing additional macronutrients such as fat and

protein besides CHO.

• Provide estimates of quantities that characterise the postprandial glucose metabolism,

i.e. insulin sensitivity (IS) and meal-related glucose appearance (GA).
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• Be robust so that minor adaptions to the model formulation and identification pro-

cedure retain the validity of the model. The model should also be well-established

so that the validity of any changes can be assessed by comparison with results

from the literature and existing information can be utilised to specify prior dis-

tributions.

• Posses minimal complexity to allow the development of glucose-only models.

A common feature of the models fulfilling the first two criteria is that they use the

measured glucose concentration as the model output to fit the data against. In contrast,

their use of the measured insulin concentrations is different which allows the distinction

between two approaches. On the one hand, there are models that contain a description

of the plasma insulin concentration dynamics and thus use said dynamics as a model

output to fit the measured insulin levels against, analogous to the glucose levels. On the

other hand, there are models that use the measured insulin levels as a known input and

only fit the model predicted glucose levels against the data. This distinction is impor-

tant as it influences the possible approaches for the development of glucose-only models.

Several models falling in the former category and fulfilling the first two above named

criteria have been proposed [65–69]. This could allow the identification of these models

without any modification to the model structure, if all states of the model would be

observable and the parameters would be identifiable from glucose data only. This is,

however, highly improbable given that these models possess a minimum of five compart-

ments, representing different glucose and insulin sub-compartments and a large number

of parameters, some of which are fixed during parameter estimation. It is therefore

unfeasible to choose these models as basis for a glucose-only modelling approach due to

their highly complex nature.

In contrast, the models proposed by Wilbaux et al. [70] and Dalla Man et al. [71] also

fulfil the first two above named criteria, but use the measured insulin concentrations as

a known input to fit the model against measured glucose concentrations. In comparison

to models that directly describe insulin dynamics, the models [70, 71] require adaptation

before the identification from glucose data only. Their advantage, however, is that they

have a reduced number of states, parameters and therefore complexity, making them

suitable for the glucose-only modelling task in this thesis.

The model proposed by Wilbaux et al. [70] was published only recently and has
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therefore not been extensively validated against independent datasets. We will there-

fore choose the oral minimal model (OMM) published in 2002 by Dalla Man et al.

[71] as basis for the development of glucose-only models. The OMM fulfils all of the

required criteria because it is sufficiently simple, containing only two states, and uses

measured insulin concentrations as a known input to fit the model against measured

glucose concentrations. It also provides useful measures for assessing postprandial glu-

cose metabolism in the form of IS and GA. The OMM has been extensively validated

against data from experiments using traced glucose [72] as well as traced glucose and

HEC measurements [73]. In both studies, it was concluded that the OMM is a reliable

tool to estimate both IS and the GA from glucose and insulin responses to OGTTs and

mixed meals. This has made the OMM the most popular method for assessing post-

prandial glucose metabolism [74], as evident by its use in a number of highly influential

publications, e.g. [47, 75–78].

These properties make the OMM the most suitable candidate to form the basis for the

development of glucose-only models. The datasets used in this thesis, however, demand

adaptations that allow the identification of the OMM from non-fasting conditions and

the description of meal responses of varying duration. Making these adaptations will

be the subject of Chapters 4 and 5, where a detailed discussion of the OMM will be

provided.
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Methodology

The following chapter describes the methodology for model development and identifica-

tion used in this thesis. This process consists of model formulation, structural/practical

identifiability analysis, parameter estimation, sensitivity analysis and model compari-

son.

3.1 Model formulation

The mathematical models utilised and developed in this thesis will be formulated

through ordinary differential equations (ODE). These equations describe the evolution

of the modelled system over time. The system itself is hereby represented through its

state variables, which describe different aspects of the system dynamics and are defined

by a system of first-order ordinary differential equations of the form

dx(t)

dt
= F (x(t),p,u(t), t) x(0) = x0. (3.1)

In this thesis letters in bold represent vectors and matrices and t represents time. The

n-dimensional vector x(t) = {x1(t), . . . , xn(t)} contains all state variables with the

associated vector of initial conditions x0 = {x01, . . . , x0n}. The vector of functions

F = {F1, . . . , Fn} describes the relationship between the state variables, the fixed-

value m-dimensional parameter vector p = {p1, . . . , pm} and known external inputs

u(t) = {u1(t), . . . , un(t)} [79]. In the context of model identification, the system is

observed through a measurement process affected by random noise. This process could

theoretically encompass multiple measurements, each comprised of nonlinear combina-

20
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tions of state variables and parameters. In this thesis, however, only the simplified case

of one single measurement process directly observing a single state variable without

bias or gain is considered. In mathematical terms, the measurement process can be

formulated as follows

y(t) = xi(t) + ε for i = 1...n and ε ∼ N (0, λ2). (3.2)

y(t) is the continuous representation of the measurement time series based on a single

state variable and is also referred to as model output. The measurement noise ε is

assumed to be additive and follows a normal distribution with zero mean and standard

deviation λ. More elaborate models of the measurement uncertainty, such as multi-

plicative noise, are not considered as they make the parameter estimation procedure

considerably more complex. Furthermore, as absolute glucose levels, which is the only

observed quantity considered in this thesis, are always significantly larger than the mea-

surement error itself, a multiplicative measurement error is not feasible. Additionally,

utilising an additive error model is standard practice when glucose assay and CGM data

are used for the parameter estimation [8, 80]. The actual measured time series data

consisting of T discrete measurements are denoted with y = {y1, . . . , yT }.

Based on this framework, it is possible to formulate the structure of a model,

which essentially means proposing specific mathematical definitions for the functions

F1, . . . , Fn. If these functions are only defined by the linear combinations of one (or

multiple) parameters and states, the model is considered to be linear in x(t), if not the

model is nonlinear.

3.2 Structural identifiability

3.2.1 Overview

Model (3.1) includes the unknown parameter vector p which contains key information

about the underlying system. Any unknown initial conditions are combined with the

model parameters to a single vector of unknown parameters ϑ = {p,x0}. These un-

known parameters are not measured directly, meaning that the estimation of parameter

values can only be approached indirectly by observing the system in response to exter-

nal stimulation. A prerequisite for this parameter estimation is to determine whether
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the model structure allows the unique recovery of parameter values from a continuous

and error-free observation, i.e. ε = 0. This is a mathematical property of the model

that has to be established before parameter estimation and is referred to as a priori

structural identifiability [8, 81].

An alternative view of structural identifiability is to ask whether two or more com-

binations of parameter values could lead to the same model output. This allows the

distinction between structural global and local identifiability. A model is said to be

structurally globally identifiable if there is only a single combination or unique set of

parameter values defining the model output. Structural local identifiability occurs when

there is a finite number of parameter value combinations that yield the same observa-

tion. Correspondingly, a model is structurally unidentifiable if there exists an infinite

number of parameter value combinations defining the model output [8, 81]. This can

be exemplified by considering the following simple model

dx(t)

dt
= −(p1

2 + p2)x(t), x(0) = x0, y(t) = x(t). (3.3)

The single state variable is denoted with x(t), the observation is y(t) and the unknown

parameters are p1 and p2. In (3.3) there exists an infinite number of combinations for

the values of parameters p1 and p2 that lead to the same coefficient of x(t) and, there-

fore, to the identical observation y(t), even if the initial condition x0 is known. The

model is therefore structurally unidentifiable. If the parameter p2 is considered to be

known, the model is still only structurally locally identifiable, because there exist ex-

actly two values for p1, i.e. p1 and −p1, leading to the same model output. To overcome

this issue, the parameter p1 could be restricted to positive values, therefore making it

structurally globally identifiable if p2 is known.

3.2.2 Testing for structural identifiability

In the past decades, several approaches for analysing the structural identifiability of a

model have been proposed. These include the Similarity Transform Approach [82], the

Taylor series approach [83] and methods based on differential algebra [84], particularly

the observability rank criterion (ORC) method [85]. In this thesis, we will utilise the

Taylor series and ORC methods which are introduced in more detail.

The Taylor series approach was introduced in 1978 by Pohjanpalo [83] and can be
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applied to bilinear and nonlinear models formulated in state-space representation. The

approach is based on the Taylor series expansion of the model output around a known

time point t0 ≥ 0, typically t0 = 0, to give

y(t,ϑ) = y(0)(t0,ϑ) + y(1)(t0,ϑ)
t− t0

1!
+ · · ·+ y(k)(t0,ϑ)

(t− t0)k

k!
+ · · · , (3.4)

where the k + 1 Taylor coefficients are defined by successive derivatives of the model

output with respect to time

y(k)(t0,ϑ) =
dk

dtk
y(t0,ϑ), for k = 0, 1, 2, .... (3.5)

These Taylor series coefficients can theoretically be fully determined by the measured

model output y(t). To demonstrate that a given parameter vector ϑ leads to a unique

output, the following system of k + 1 simultaneous equations introducing the vector ϑ

is defined
y(t0,ϑ) = y(t0,ϑ)

y(1)(t0,ϑ) = y(1)(t0,ϑ)

...

y(k)(t0,ϑ) = y(k)(t0,ϑ).

(3.6)

If this system has the single solution ϑ = ϑ, then all Taylor coefficients are uniquely

defined by the unknown parameters and the model is structurally globally identifiable.

If the system of equations has multiple solutions, it could be the case that not enough

Taylor series coefficients have been used or that some parameters are truly structurally

locally identifiable. Proving the structural local or unidentifiability of parameters in

generalised nonlinear models is, however, very difficult as it would require a strict up-

per bound on the number of linearly independent Taylor series coefficients. While such

upper bounds have been established for certain types of models, e.g. linear, an upper

bound for generalised nonlinear models is missing. Additionally, establishing the linear

independence of the Taylor series coefficients can be difficult as well [84].

To calculate the Taylor series coefficients and solve the system of simultaneous equa-

tions in expression (3.6), it is common to employ symbolic computation software. For

that, this thesis will use Mathematica (Wolfram Research, Inc., Champaign, IL, USA).

This makes the implementation of the Taylor series method straightforward in compar-
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ison to the other previously mentioned methods for structural identifiability analysis.

The details of the Mathematica implementation of the Taylor series method are pro-

vided in Appendix B. Additional to the difficulties in establishing the structural local or

non-identifiability of the parameters with the Taylor series method it is also not always

possible to solve system of equations with symbolic computation for any given number of

Taylor series coefficients. Whether the computation completes and the structural iden-

tifiability of the model can be assessed is therefore highly dependant on the complexity

of the model, the number of simultaneous equations, i.e. Taylor series coefficients, and

the number of unknown parameters.

Should it be impossible to show the structural global identifiability with the Taylor

series method, we will resort to a different approach that can establish the structural

local identifiability or non-identifiability of parameters in generalised nonlinear models.

It is based on a property of the model called observability, which determines whether the

model’s internal states can be ascertained from the output measurements in finite time.

If the parameters are thereby treated as state variables with zero dynamics, it is possible

to determine their structural local identifiability by calculating the rank of a generalised

observability-identifiability matrix using results from differential geometry [85]. The

disadvantage of this method is that it is not possible to determine the locally identifiable

parameter combinations. The method is referred to as the ORC (observability rank

criterion) method and is implemented as a freely available MATLAB (The MathWorks,

Inc., Natick, MA, USA) toolbox called STRIKE-GOLDD [85, 86].

3.3 Parameter estimation

3.3.1 Overview

In the Introduction, it was mentioned that there are two basic approaches to parameter

estimation. Frequentist, also known as Fisherian approaches, assume that unknown

parameters are deterministic and can be represented by a single value. This is also

known as maximum likelihood estimation because the approach maximises the function

L(y|p,M), representing the likelihood of obtaining the data y given the parameters p

and the model M to get a single most probable parameter estimate p̂ML using

p̂ML = arg max
p

L(y|p,M). (3.7)
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If the measurement error is Gaussian, the calculation of p̂ML is equivalent to minimis-

ing the sum of squared errors between the data and the model output with respect to p

[87]. For that, numerical optimisation routines such as the Levenberg-Marquardt algo-

rithm are available. To quantify the associated uncertainty of the parameter estimates,

the inverse of the Fisher Information Matrix is often used. This approximation gives a

lower bound on the covariance matrix of parameter estimation error by using the sen-

sitivity matrix and covariance matrix of measurement noise. It should be emphasised

that the frequentist approach assumes any uncertainties in the parameters to arise from

uncertainties in the data and not in the model specification, meaning that the model

structure is considered to be true [8].

In contrast to the frequentist approach, the Bayesian approach used in this thesis

assigns the model a probability of being true based on the data and formulates a prob-

ability density function (PDF) over unknown parameters. All PDFs are denoted by

f in this thesis. To estimate the unknown distributions, the Bayesian approach uses

both the measured data and information existing before data collection, also known as

a priori information. Bayes’ theorem is applied to formulate the PDF over parameters

after data collection fp|y,M (p|y,M), known as the posterior distribution, from the PDF

over parameters before data collection fp|M (p|M), known as the prior distribution

fp|y,M (p|y,M) =
L(y|p,M)fp|M (p|M)

P (y|M)
. (3.8)

The posterior distribution fp|y,M in expression (3.8) is obtained by updating the prior

distribution fp|M based on the previously introduced likelihood function L. The de-

nominator of expression (3.8) is known as the marginal likelihood, or model evidence.

It acts as a normalisation constant for the posterior distribution and can be calculated

by integrating the numerator with respect to parameters p [87]

P (y|M) =

∫
L(y|p,M)fp|M (p|M)dp = E[L(y|p,M)]fp|M . (3.9)

Here E[·]f denotes the expected value with respect to the PDF defined by f . In a

fully Bayesian treatment of the parameter estimation procedure, also known as model

inversion, this model evidence is calculated as a by-product. It provides a measure for

comparing multiple models identified from the same dataset [8, 87]. More details on

the model comparison procedure are provided in section 3.5.
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Comparing the frequentist and Bayesian approaches, it can be stated that the Bayesian

method has the advantage of providing a consistent framework for: (1) including existing

knowledge into the parameter estimation via the prior fp|M (p|M), (2) the quantifica-

tion of uncertainty in the parameters estimates though the calculation of the posterior

density fp|y,M (p|y,M) and (3) the comparison and combination of different models via

the model evidence P (y|M). The Bayesian approach will therefore be chosen in this

thesis.

The disadvantage of the Bayesian approach is that the complexity of the models for-

mulated in this thesis makes it impossible to directly calculate the posterior distribution

of unknown parameters (3.8) and model evidence (3.9). This has led to the develop-

ment of approximation schemes for Bayesian parameter estimation. These schemes can

generally be divided into stochastic and deterministic methods [87].

Stochastic techniques, also known as sampling methods, construct the posterior den-

sity through iterative algorithms which are based on drawing random samples of the

vector p. Given enough computational power and time, this process will converge to

the true posterior distribution. Prominent algorithms for this task are the Markov

Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) approaches [8, 87].

In the field of glucose dynamics modelling, sampling methods have been applied to

several models with increasing prominence in recent years [88–92]. Despite this popu-

larity and guaranteed convergence to the true posterior distribution, stochastic methods

have several drawbacks. The main disadvantage is that sampling procedures are com-

putationally expensive, often inefficient and it can be difficult to decide whether the

algorithm has converged. Additionally, standard MCMC algorithms only approximate

the posterior PDF over parameters and avoid the computation of the model evidence

[93].

In contrast to the stochastic sampling methods, deterministic methods approximate

the posterior distribution analytically by assuming it has certain properties such as

factorising in a specific way or taking a specific parametric form. This means that the

true posterior distribution can never be exactly inferred. In return, they are compu-

tationally much less expensive in comparison to sampling methods. Additionally, they

approximate the model evidence along with the posterior distribution over unknown

parameters [87], which makes them particularly useful for the modelling task in this

thesis. The utility of such a parameter estimation technique in the field of glucose dy-
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namics modelling has been demonstrated by Zhang et al. [25].

Given the drawbacks of the sampling methods previously mentioned, this thesis will

employ a deterministic method called variational Bayesian (VB) analysis. This method

is computationally more efficient and can provide results within minutes when operated

on a conventional PC. This makes the VB approach feasible in a clinical setting for

which the models in this thesis are developed for.

Aside from the distinction between deterministic and stochastic methods, parame-

ter estimation techniques can be differentiated in terms of their usage of the data. In

this thesis, the time series data y are collected from multiple subjects under the same

experimental conditions. This could allow a mixed-effects modelling (MEM) approach,

which incorporates the data from all individuals simultaneously for the estimation of

the parameters. For that, parameters on the subject level are described as the result

of a random fluctuation, known as random effect, about an overall population mean,

known as fixed effect. This ties the subjects and their data together by assuming an

overall population distribution of each parameter and a shared covariance matrix of the

random effects, describing the variability between subjects [94] (Figure 3.1 (a)). The

MEM approach has been used in conjunction with both Bayesian [89] and frequentist

parameter estimation techniques [42] for models of glucose dynamics and is particularly

useful when the data on an individual level are sparse [95].

Figure 3.1: Schematic depiction of the (a) mixed-effects and (b) individualistic mod-
elling approaches. The mixed effects modelling approach assumes a population dis-
tribution of parameters and allows the flow of information between subjects. In the
individualistic approach subjects and are treated independently and only share a com-
mon prior distribution.
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In contrast to the MEM technique, this thesis will employ a more individualistic

approach in which each subject’s data are considered separately and the parameter es-

timation for one subject is completely independent from the data of the other subjects.

All unknown parameters in all subjects will however be estimated from the same prior

distribution (Figure 3.1 (b)). For the particular modelling task in this thesis, the indi-

vidualistic approach has two main advantages over the MEM approach and is therefore

chosen. Firstly, the individualistic approach requires no assumption of a common pop-

ulation distribution, which could be difficult to specify when a population of subjects

with varying degree of glucose tolerance is considered. Secondly, glucose responses to

the same food are known do undergo considerable, interpersonal variability [96, 97].

It is therefore preferable to use the individualistic appraoch for the characterisation a

person’s glucose metabolism. In contrast, the MEM approach focusses on estimating

the average behaviour of an individual within a population [94].

3.3.2 The variational Bayesian scheme

The variational Bayesian (VB) scheme for the inversion of nonlinear state-space models

was introduced in 2009 by Daunizeau et al. [98] and is based on earlier works by Friston

et al. [99–101] and Beal [102]. Its mathematical details are covered elsewhere [93, 98,

103]. For completeness, an brief overview on the underlying theory is provided below.

More attention is given to its application to the model formulation considered in this

thesis, which is a specific case of a more generic class of models the VB method was

developed for. To the author’s knowledge, a systematic comparison between the VB

method and other Bayesian or frequentist parameter estimation techniques for nonlin-

ear state-space models has not been carried out and lies beyond the scope of this thesis.

3.3.2.1 Theoretical background

As mentioned before, the Bayesian approach treats all unknown parameters as random

variables characterised by a PDF. From model (3.1) - (3.2), the unknown quantities

are the model parameters p, initial conditions x0 and the magnitude of measurement

uncertainty, which was specified by the standard deviation λ in expression (3.2). In-

stead of λ, the VB method uses the precision κ = λ−2 to quantify the measurement

uncertainty. A more detailed discussion on the relationship between κ and λ is provided

in section 3.3.2.2.
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For simplicity, the unknown parameters are described by a single variable θ = {ϑ, κ},

where the vector ϑ is the concatenation of unknown model parameters p and initial con-

ditions x0. The goal of the VB algorithm is to approximate the posterior density fθ|y,M

and to quantify the model evidence P (y|M), introduced in (3.8) and (3.9), respectively.

For that, the density fq, approximating the true posterior density is introduced and the

Kullback-Leibler divergence between the two densities is formulated as:

DKL(fq ‖ fθ|y,M ) =

∫
fq(θ) log

fq(θ)

fθ|y,M (θ|y,M)
dθ

= E
[
log

fq(θ)

fθ|y,M (θ|y,M)

]
fq

,

(3.10)

providing a measure for the difference of the two densities. In this thesis, the operator

log refers to the logarithm with respect to the base of Euler’s number e. Through the

replacement of the posterior fθ|y,M with expression (3.8) and subsequent simplification

and reformulation, the following expression for the free energy F can be derived (see

Appendix A.1 for the details of the derivation)

E[logL(y|θ,M) + log fθ|M (θ|M)− log fq(θ)]fq︸ ︷︷ ︸
F

= logP (y|M)

−DKL(fq ‖ fθ|y,M ).

(3.11)

DKL is restricted to positive values, meaning that if DKL = 0, then fq and fθ|y,M are

identical and the free energy F is equal to the log of the model evidence logP (y|M).

Maximising the free energy with respect to fq is thus equivalent to minimising the

Kullback-Leibler divergence DKL, therefore simultaneously providing an approxima-

tion of the true posterior through fq and of the lower bound on the model evidence

through F .

For this maximisation of the free energy, it is necessary to assume that the ap-

proximate joint distribution of fq, factorises into the densities of individual, unknown

parameters, which is known as the mean-field approximation. For the models in this

thesis this yields

fq(θ) = fqϑ(ϑ)fqκ(κ). (3.12)

Based on this assumption, the maximisation of the free energy can be split into the op-

timisation of one component of fq at a time, while keeping the other component fixed.
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Since expression (3.11) for F is a functional, variational calculus is utilised to calculate

the optimisation rules for the individual components, giving rise to the name of this

method. The overall optimisation is implemented as an iterative process and is repeated

until the free energy converges. A schematic depiction of this process in provided in

Figure 3.2.

Figure 3.2: Schematic description of the free energy maximisation through the iter-
ative update of individual components of fq. This simultaneously minimises DKL and
brings the free energy F closer to the log model evidence but leaves a gap depending
on the final value of DKL. The mark * indicates that the density has been updated. In
the case of fqϑ, this is achieved through a Gauss-Newton optimisation scheme carried
out within the main free energy maximisation [93].

To calculate the iterative update rules for the two approximate densities fqϑ and fqκ ,

assumptions on the functional forms of their prior distributions have to be made. The

measurement uncertainty precision κ is restricted to positive values and its prior PDF

is therefore modelled with a Gamma distribution, specified by shape and rate variables

a0 and b0, referred to as the sufficient statistics of the PDF over κ

κ ∼ Ga(a0, b0). (3.13)

Choosing a Gamma shaped prior distribution over κ has the additional advantage that it

forms a conjugate prior to the approximated Gaussian-shaped likelihood function. This

means that fqκ also follows a Gamma distribution allowing for the update rules of its

sufficient statistics to be directly calculated without the need for further approximation.

In contrast, the unknown model parameters are not restricted and their prior PDF

is modelled with a normal distribution specified by the sufficient statistics µ0
ϑ and Σ0

ϑ
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so that

ϑ ∼ N (µ0
ϑ,Σ

0
ϑ). (3.14)

Together with nonlinearities in the likelihood function, this leads to a posterior distri-

bution that is not in the conjugate-exponential family. This renders the calculation of

the update rules analytically intractable and further approximation is required. For

that, the VB approach utilises the Laplace approximation which defines fqϑ by its first

two moments and matches them to a Gaussian distribution approximating fqϑ . To find

the mode, i.e. first order moment, the VB approach employs the Gauss-Newton optimi-

sation scheme, i.e. a second iterative process nested within the main update algorithm

(see Figure 3.2). After the mode has been found, the variance of the approximated fqϑ

is derived from the second-order truncation of its Taylor series expansion. The result

is a Gaussian PDF over the unknown parameters specified by a mean and covariance

matrix [98].

3.3.2.2 Practical considerations

The core of the VB approach is implemented in a freely accessible library of MATLAB

functions [104], hereafter referred to as the VB toolbox. Daunizeau et al. [105] have

given an overview of its application to models for neurobiological and behavioural data.

However, to the author’s knowledge, its application to state-space models in metabolic

physiology has not been discussed in the literature. This section will thus discuss the

most important aspects of its application to the models and data used in this thesis and

provide the necessary technical details for future use by independent researchers.

Model specification and ODE solution

Throughout the model inversion process, previously described, the ODEs defining the

model have to be solved so that the current model output y(t) can be compared to the

available data y. For that, the VB toolbox requires the user to specify an update rule

to calculate the next value of the state space vector xt+1 based on its current value xt

using a fixed, user-specified time step size of ∆t. This approximation to the solution of

a continuous state-space model using discrete time steps is performed using the Euler
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discretisation scheme [105]

xt+1 = xt + F (xt,p,ut)∆t xt=0 = x0. (3.15)

The VB toolbox only passes the mean of the model parameters p to the user as a point

estimate of the associated PDF. The vector of inputs ut has to be specified at each

time step, where the time itself can be considered as a known input. This procedure

allows an adequate approximation of the state trajectories if ∆t is significantly smaller

than the quickest decay of the system [105], which is the case for the models used in

this thesis. Specifically, a step size of 0.1 min was chosen and proved sufficiently small

as further reduction of the step size did not lead to a significant change in the results.

It should nevertheless be emphasised that the use of Euler’s method with a constant

step size is not inherently stipulated by the VB method, despite being implemented in

the VB toolbox [104, 105]. It is thus theoretically possible to implement more complex

ODE solution algorithms with a variable step size.

To update the model parameters during the Gauss-Newton optimisation scheme

previously mentioned, it is necessary to calculate a trajectory of the model’s sensitivity,

i.e. the derivative of the states xt with respect to the unknown parameters p and initial

conditions x0. To our knowledge no detailed information on this procedure is available

in the literature, so the mathematical details are provided below. The trajectories for

model sensitivity are defined in continuous time by

Sp(t) =
dx(t)

dp
=


dx1
dp1

. . .
dx1
dpm

...
. . .

...
dxn
dp1

. . .
dxn
dpm

 and Sx0(t) =
dx(t)

dx0
=


dx1
dx01

. . .
dx1
dx0n

...
. . .

...
dxn
dx01

. . .
dxn
dx0n

 ,
(3.16)

where Sp(t) is a n ×m matrix and Sx0(t) is a n × n matrix describing the sensitivi-

ties of the n model states with respect to the m parameters and n initial conditions,

respectively. Applying the multivariate chain rule to the model (3.1) yields [106]

dSp(t)

dt
=

d

dt

(
dx(t)

dp

)
=
∂F

∂p
+

∂F

∂x(t)

dx(t)

dp
,

dx(t)

dp

∣∣∣∣
t=0

= 0,

dSx0(t)

dt
=

d

dt

(
dx(t)

dx0

)
=

∂F

∂x(t)

dx(t)

dx0
,

dx(t)

dx0

∣∣∣∣
t=0

= I,

(3.17)
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where F is defined by the model equations (3.1) and I denotes the identity matrix. The

partial derivatives of the model equations F with respect to the states x(t) and model

parameters p are provided to the VB toolbox by the user and defined by

J(t) =
∂F

∂x(t)
=


dF1

dx1
. . .

dF1

dxn
...

. . .
...

dFn
dx1

. . .
dFn
dxn

 and H(t) =
∂F

∂p
=


dF1

dp1
. . .

dF1

dpm
...

. . .
...

dFn
dp1

. . .
dFn
dpm

 ,
(3.18)

where J is a n×n matrix andH is a n×m matrix which can be analytically calculated

using symbolic computation software. Taking into account expressions (3.16) and (3.18),

the differential equations (3.17) are reformulated as

dSp(t)

dt
= H(t) + J(t)Sp(t) Sp(0) = 0

dSx0(t)

dt
= J(t)Sx0(t) Sx0(0) = I.

(3.19)

and solved simultaneously with the ODE itself. For that, we move from continuous to

discrete-time notation and utilise Euler’s method

Spt+1 = [Ht + JtSpt]∆t+ Spt Spt=0 = 0,

Sx0 t+1 = [JtSx0 t]∆t+ Sx0 t Sx0 t=0 = I.

(3.20)

Transformation of parameters

In the previous section, it was explained that the VB method assumes certain para-

metric distributions over the unknown parameters, in particular Gaussian and Gamma

distributions. In practice, however, it is often useful to choose a different distribution

for the model parameters before parameter estimation. The treatment of three such

cases within the VB method is discussed below.

Restriction of parameters to positive values

Assuming the model has a single parameter p, whose PDF is specified with the Gaussian

density fp, mean µ and standard deviation σ, a restriction to positive values can be
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achieved by introducing the substitute parameter s and the exponential mapping s =

exp(p). This restriction is common in metabolic modelling, where parameters are often

constrained to positive values by the underlying physiology. As far as we are aware, the

detailed consequences of this exponential mapping in the context of the VB approach

are not discussed in the literature and thus provided below. To determine the density

fs over the substitution for the parameter s from the density fp using the exponential

mapping, the following theorem can be used. If fx is a PDF over the random variable

x and the mapping y = h(x) is introduced, then the PDF over the random variable y

is given by [107]

fy(y) = fx(h−1(y))

∣∣∣∣dh−1(y)

dy

∣∣∣∣ . (3.21)

Applying this result, the density fs over s is given by

fs(s|µ, σ) =
1

s
√

2πσ
exp

(
−(log s− µ)2

2σ2

)
, (3.22)

which can be recognised as the log-normal distribution. As previously mentioned, the

VB toolbox passes the mean µ to the user for model specification. Applying the expo-

nential mapping to µ, i.e. m = eµ leads to the fact that the model uses the median m

of fs as q point estimate to solve the model ODEs.

In this work we can generalise this property of µ mapping to the median of fs to all

strictly monotonic mapping functions s = h(p) with the following considerations. It is

assumed that a series of random samples of p are mapped to random samples of s by

applying the function h. As the number of samples increases, it is expected that half of

the samples of p will be smaller than µ and the remaining half larger than µ, because

µ is not only the mean, but also the median of fp. Given the strictly monotonic nature

of the function h, it follows that half of the samples of s will be smaller (larger) than

m = h(µ) and the remaining half will be larger (smaller) than m = h(µ), depending on

whether h is strictly monotonically increasing or decreasing. This means that m has to

be the median of the distribution fs.

Returning to the specific case of the exponential mapping function, the uncertainty in

the log-normally distributed parameter s can be quantified by its coefficient of variation

(CV) and calculated using [108]

CV =
√

exp(σ2)− 1. (3.23)
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This means that the CV of fs is independent of its median, which has the result that

its posterior CV is guaranteed to be smaller or equal to its prior CV. Another useful

characterisation of the uncertainty in s is the one-sigma range around the median m,

which is calculated by [108] [
m

exp(σ)
,m · exp(σ)

]
. (3.24)

To specify the prior distribution over p based on the respective prior of s with m0 and

CV0, the following equations are used

µ0 = logm0 and σ0 =

√
log(CV0

2 + 1). (3.25)

If there are multiple normally distributed parameters described by a vector of means µϑ

and covariance matrix Σϑ and transformed via the exponential mapping, the resulting

correlation coefficient of the ith and jth log-normally distributed parameters can be

calculated by [109]

rij =
exp(Σij)− 1√

(exp(Σii)− 1)(exp(Σjj)− 1)
, (3.26)

where Σij is the entry of the ith row and jth column of the covariance matrix Σϑ.

Restriction of parameters to values between 0 and 1

Another scenario appearing in this thesis is that a model parameter p needs to be

restricted to the interval (0, 1), because it determines the ratio between values A1 and

A2 that need to be positive and have fixed, known sum A, i.e.

A = A1 +A2 and p =
A1

A2
. (3.27)

This can be reformulated into

A = (1− p)A︸ ︷︷ ︸
A1

+ pA︸︷︷︸
A2

. (3.28)

If p lies in the interval (0, 1), it is guaranteed that the value of A stays constant and A1

and A2 remain positive. Restricting a normally distributed parameter p to the interval

(0, 1) is achieved by replacing p with the substitute parameter s and a logistic function

s = S(p) =
1

1 + exp(−p)
. (3.29)
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The theoretical implications of this mapping in the VB context have been analysed by

Daunizeau [110]. The findings of Daunizeau’s work are summarised below and their

application in this thesis is explained. Assuming that p is normally distributed with

mean µ and standard deviation σ, and utilising (3.21), the density fs over s is given by

fs(s|µ, σ) =
1√

2πσs(1− s)
exp

−
[
log
(

s
1−s

)
− µ

]2
2σ2

 for 0 < s < 1. (3.30)

The first and second order moments of this PDF cannot be determined analytically.

Daunizeau [110] therefore proposed the following approximation for the mean and vari-

ance of fs, which yields a relative error of less than 2% over a large range of possible

values for µ and σ:

E[s]fs ≈ S
(

µ√
1 + aσ

)
with a =

3

π2

Var[s]fs ≈ E[s]fs(1− E[s]fs)

(
1− 1√

1 + aσ

)
.

(3.31)

Using this approximation of E[s]fs as a point estimate for the parameter s during model

specification is not possible because only the mean µ of p is provided by the VB toolbox.

In this thesis, we instead propose to use the median m of fs as point estimate because

it is independent of σ and can be calculated using

m =
1

1 + exp(−µ)
. (3.32)

This expression for the median can be determined with symbolic computation or can

be directly deduced from the considerations of the previous section describing the re-

lationship between the mean of a Gaussian variable and the median of a distribution

after mapping. Recognising the fact that the function S in (3.29) is a strictly monoton-

ically increasing function, as shown by dS/dp > 0, the expression (3.32) can be directly

deduced without the need to apply symbolic computation.

To quantify the uncertainty in s with the CV, Daunizeau’s formulas from expression

(3.31) are used,

CV =

√
Var[s]fs
E[s]fs

. (3.33)

To specify the prior distribution over p based on the respective prior of s, the following
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procedure was developed in this thesis. The prior mean µ0 is calculated from the selected

prior median m0 of s as follows:

µ0 = − log

(
1

m0
− 1

)
. (3.34)

The possible prior values for σ0 are then varied numerically until the desired prior CV

is sufficiently approximated.

To calculate the correlation between logistically and exponentially transformed pa-

rameters, there exists, to the author’s knowledge, no analytical expression similar to

(3.26). A Monte Carlo based approximation approach is therefore adopted. First, one

million random samples for each component of the original, multivariate normal dis-

tribution specified by µϑ and Σϑ are generated. Secondly, the random samples are

transformed using the logistic and exponential mapping, respectively, and their sample

Pearson correlation coefficients are calculated using standard techniques.

Transformation of noise precision parameter

The VB method assumes a Gamma PDF specified by sufficient statistics a and b for

the precision κ of the measurement uncertainty. This PDF is defined by

fκ(κ|a, b) =
ba

Γ(a)
κa−1 exp(−κb) for κ, a, b > 0, (3.35)

where Γ(·) is the Gamma function. The mean and variance of this distribution are given

by [107]

E[κ]fκ =
a

b
and Var[κ]fκ =

a

b2
. (3.36)

In this thesis, the measurement process is modelled using expression (3.2), where the

measurement noise intensity is characterised by the standard deviation λ. The change

from κ to λ is necessary because the oral minimal model previously chosen requires the

user to specify the measurement uncertainty based on the inter-assay CV of the glucose

assay, i.e. a known λ. This requirement extends to a wide range of models used in

metabolic physiology, where it is common to characterise the measurement error of the

collected data in terms of the standard deviation λ. When applying the VB method

to these models, it becomes necessary to specify the prior PDF of κ based on known



Chapter 3. Methodology 38

values for λ. Additionally, it is useful to be able to interpret the posterior distribution

over κ in terms of λ. This thesis, therefore, proposes the following novel method for the

forwards and backwards transformation between the PDFs over κ and λ. This method

has now been accepted by the development team as an official part of the VB toolbox

[104].

Similar to the previous section on exponential and logistic transformations, expres-

sion (3.21) and the mapping λ = 1/
√
κ are used to formulate the PDF fλ over λ as

fλ(λ|a, b) =
2ba

Γ(a)
λ−2a−1 exp

(
− b

λ2

)
for κ, a, b > 0. (3.37)

Using symbolic computation, this new PDF can be characterised by the following ex-

pression for the mean µ and the standard deviation σ, valid for a > 1:

µ = E[λ]fλ =
√
b
Γ(a− 1

2)

Γ(a)
,

σ2 = Var[λ]fλ = b

[
1

a− 1
−

Γ(a− 1
2)2

Γ(a)2

]
.

(3.38)

To facilitate the numerical calculation, the logarithm of the Gamma function log Γ(·) is

used instead of the fast growing Gamma function itself. This modifies (3.38) to give

µ =
√
b exp

[
log Γ(a− 1

2
)− log Γ(a)

]
,

σ2 = b

[
1

a− 1
− exp

[
log Γ(a− 1

2
)2 − log Γ(a)2

]]
.

(3.39)

An example of the PDFs over κ and λ is provided in Figure 3.3, where it is demonstrated

that the mean of fκ does not simply transform into the mean of fλ by applying the

mapping λ = 1/
√
κ. Furthermore, a transformation of the median of fκ is not possible

because the Gamma PDF has no closed form expression for its median.

To specify the prior distribution over κ based on the chosen prior PDF over λ defined

by µ0 and σ0, it is necessary to calculate the associated values for a0 and b0. For this

the following procedure is proposed. We begin by defining the following substitution

S(a) =
Γ(a− 1

2)2

Γ(a)2
= exp

[
log Γ(a− 1

2
)2 − log Γ(a)2

]
. (3.40)
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Figure 3.3: Examples of the two PDFs of fκ and fλ for a = b = 2. The dashed vertical
lines display the values of the respective means.

This is followed by the combination and reformulation of the expressions (3.39) into

D(a) =
µ0

2

S(a)
− σ0

2

1

a− 1
− S(a)

. (3.41)

This eliminates b and makes it possible to find a0 by solving the equation D(a0) = 0

and subsequently finding b0 using

b0 =
µ0

2

S(a0)
. (3.42)

To find a0, the expression (3.41) is reformulated into a constrained numerical minimi-

sation task

a0 = arg min
a

(
log
[
D(a)2 + 1

])
for a > 1. (3.43)

The square operation and addition of one within the logarithm ensures that the objective

function is always positive except for log[D(a0)
2 + 1], where the expression is zero. The

logarithm facilitates the numerical calculations since the values of only D(a)2 would

grow rapidly as a increases. An example of the objective function for different values

of µ0 and σ0 is given in Figure 3.4, demonstrating a clear minimum of the objective

function at a0.

This minimisation can be solved using an appropriate constrained optimisation tech-

nique, e.g. fminbnd in MATLAB. Since the expression (3.38) is only valid for a > 1

the lower bound is set to 1. To specify an upper bound based on the given values of

µ0 and σ0 we start by approximating the function S(a) from the expression (3.40) with
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Figure 3.4: Examples of the objective function log[D(a)2 + 1] for differing values of of
µ0 and σ0. The dashed lines give the respective values of the upper bound estimation
of â0.

the first two terms of its power series expansion for a→∞, giving

Ŝ(a) =
1

a
+

3

4a2
. (3.44)

With this approximation, the minimum â0 of D(a) can be found analytically

â0 =
1

8

1 +

√
49 +

µ0
4

σ04
+ 50

µ0
2

σ02
+
µ0

2

σ02

 , (3.45)

which is used as an upper bound (see Figure 3.4). This approach was validated numer-

ically under the following conditions

• 0.005 < µ0 < 104

• 0.005µ0 < σ0 < 5µ0

It was found that µ0 and σ0 can be recovered with an error of less than 1% on both.

Input and output of the VB toolbox

The last practical aspect of the VB method to be discussed is the input and output

to the VB toolbox. The implementation of the model and ODE solution routine pre-

viously described is passed to the VB toolbox as a separate function. Additionally, it

is crucial to specify the prior distributions over the unknown parameters. This is done

separately for the model parameters and initial conditions through two vectors of means

and two covariance matrices, respectively. The non-diagonal elements are typically set
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to zero, indicating no prior covariance, and the user has the option to keep the initial

conditions fixed to their prior distribution during model inversion. The same option

exists for the measurement noise precision κ, whose prior has to be specified by a0 and

b0. Throughout this thesis, the priors of all of the unknown parameters are set as in-

formative priors, meaning that preliminary knowledge about the underlying physiology,

from the literature and/or the data will be used to specify them, therefore utilising one

of the main benefits of a Bayesian parameter estimation approach.

As output, the VB toolbox provides the posterior distributions over the model pa-

rameters and initial conditions in the form of separate vectors of means and covariance

matrices as well as a single covariance matrix of parameters and initial conditions. This

then allows the characterisation of the posterior distribution over potentially trans-

formed parameters using the main diagonal of the covariance matrix to extract the

variances of the individual parameters and calculate the posterior CVs. Similarly, the

VB toolbox provides the posterior distribution over κ specified by sufficient statistics

for a and b, which are utilised to interpret the posterior distribution over λ using the

procedure described in the previous section. Lastly, the VB toolbox provides a single

value for the free energy F .

3.3.3 Choice of prior distributions

As mentioned in section 3.3.1, one of the benefits of a Bayesian parameter estimation ap-

proach is the ability to incorporate existing information about the parameters through

the formulation of suitable prior distributions. This approach uses an informative prior

and stands in contrast to the use of uninformative priors, which have a flat PDF thus

assigning a large portion of possible parameter values an equal, but low probability

[87]. An example for such an uninformative prior used with the VB approach in previ-

ous works [25] is a normal distribution with zero mean and a variance of 104.

Throughout this thesis, the priors of all of the unknown parameters are set as in-

formative priors, meaning that preliminary knowledge about the underlying physiology,

from the literature and/or the data, will be used to specify them. The foundation

for that has been been established in the previous section through the introduction of

several methods for parameter transformations.
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3.4 Parameter sensitivity

3.4.1 Practical identifiability

During the structural identifiability analysis described in section 3.2, it is assumed

that the observation of the data is continuous and error-free, which cannot be upheld

in practice. This could mean that a structurally identifiable parameter may not be

estimated with acceptable precision because its effect on the model output is so minor

that it cannot be distinguished from the measurement error. Such a parameter is

called practically unidentifiable. Practical identifiability analysis therefore examines

the estimability and precision of the obtained parameters after estimation [111].

In the context of Bayesian parameter estimation approaches, unknown parameters

are inherently treated as random variables and specified by a PDF, meaning that quan-

tifying their uncertainty is an essential part of the Bayesian method. Posterior estimates

of this uncertainty thus provide a direct method for assessing practical identifiability

[112]. In this thesis, the CV will be used to quantify the uncertainty of the parameters.

This is particularly useful for log-normally distributed parameters where the posterior

CV is guaranteed to be smaller or equal to the prior CV (see expression (3.23)). The

comparison between prior and posterior CV can therefore be used to assess practical

identifiability.

3.4.2 Sensitivity analysis

Sensitivity analysis assesses how the uncertainty in the model parameters, specified by

the shape of its PDF, affects the model states and its output. This thesis uses this

method in three scenarios, (1) to examine the effect of the PDF over a single parameter

to assess its practical identifiability prior to model inversion, (2) to assess the output

variability of different models to ensure similar variability and set the prior uncertainties

accordingly and (3) to examine the uncertainty in the model output and states after

model inversion. These analyses will be carried out using two different approaches.

The first approach is completely deterministic, local and implemented in the VB

toolbox. It first uses the vector of means of the model parameters µϑ to calculate

the mean trajectories of model states. Secondly, the trajectories of model sensitivity

discussed in section 3.3.2.2 and the covariance matrix of the model parameters and

initial conditions Σp/x0
are used to calculate the covariance matrix of the model states
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Σxt at each time step using [113]

Σxt =

 Spt
Sx0 t

T Σp/x0

 Spt
Sx0 t

 . (3.46)

The matrix Σxt can then be used to quantify the uncertainty in the model states and

thus output over time. The disadvantage of this approach is that it assumes the model

output to be normally distributed which is not necessarily the case.

The second method uses a global Monte Carlo approach and is therefore stochastic.

It involves the repeated sampling of individual parameter point estimates from their re-

spective distributions and subsequently simulating the model response over time. This

can then be used to characterise the distribution over the model output and its states

using suitable summary statistics such as median and interquartile range, without as-

suming a specific distribution.

An example of the two approaches is given in Figure 3.5. Here, it is demonstrated

that the results of the deterministic and stochastic methods are similar for low levels

of parameter uncertainty, but diverge in the case of larger uncertainties. This can be

explained by the fact the Gaussian approximation assumed by the deterministic methods

becomes less accurate for larger values of uncertainty.

3.5 Model comparison and selection

3.5.1 Overview

Throughout this thesis the modelling process will involve the proposal of several model

candidates of differing structure and complexity and the subsequent inversion of the

model candidates on the same dataset. This makes it necessary to compare the model

candidates amongst each other. Bayesian approaches calculate the probability of a

certain model Mi being true based on the collected data y, using Bayes’ theorem

p(Mi|y) =
P (y|Mi)p(Mi)

P (y)
, (3.47)

where the function p(·) gives a single probability value. It should be pointed out that

the in (3.9) defined marginal likelihood, or model evidence P (y|Mi), appears in the

numerator and not in the denominator as in expression (3.8). If every model candidate
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Figure 3.5: Comparison between deterministic and stochastic sensitivity analysis on
an example model similar to the ones developed in this thesis with four log-normally
distributed model parameters and fixed initial conditions. The three plots represent
different levels of uncertainty in the model parameters with a CV of (a) 20 %, (b) 50 %
and (c) 100 %. The deterministic analysis (blue) gives the model output from the point
estimates of parameters and the standard deviation (shaded area) calculated from the
covariance matrix Σxt. The results from the stochastic analysis (red) are based on 1000
Monte Carlo simulations summarised with the median and range between the 16th and
84th percentile (shaded area) to approximate the one-sigma range.

has the same prior probability p(Mi), expression (3.47) can be simplified to

p(Mi|y) ∝ P (y|Mi), (3.48)

meaning that the posterior probability p(Mi|y) is fully determined by the model evi-

dence P (y|Mi). It thereby complies with the principle of parsimony, which means that

it will favour the simplest possible model that fits the data, providing a trade-off be-

tween model fit and complexity [87].

In the context of VB model inversion, it was shown that the free energy F is a lower

bound on the log of the model evidence and can, therefore, be used for model compari-

son [114]. The exact decomposition of the free energy term defined in expression (3.11)

is highly complex (see [93, 114] for details) but depends on the sufficient statistics of the

prior and posterior distributions as well as the model fit. To compare the free energy

values between model candidates, the difference in F between pairs of models is calcu-

lated. A difference greater than three is considered to be strong evidence that the model

with the higher free energy is superior. This threshold is related to the log of the Bayes

factor, i.e. the ratio of marginal likelihoods of two models and represents a probabil-

ity of greater than 95 % that the model with the higher free energy is superior [114, 115].
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One drawback of using the free energy for model comparison is that the gap between

the true model evidence and free energy can be different, depending on the model can-

didate. This gap is exemplified in Figure 3.2 and arises from fact that the free energy is

only a lower bound estimate. For a particular model type known as mixtures of factor

analysers model, Beal [102] showed that the gap between true model evidence and free

energy is proportional to the number of parameters in the model, meaning that the free

energy exhibits a bias towards simpler models in this particular case. Whether this also

holds for the class of nonlinear state-space models considered here is unknown. The

free energy will therefore only be one of multiple model comparison criteria used in this

thesis. These additional criteria are dependent on the specific purpose of modelling

approach and will be explained in the corresponding chapters.

Alternative to the free energy, there exist other model selection criteria such as

Akaike’s Information Criterion and the Bayesian Information Criterion. However, both

of them are more course approximations to the log of the model evidence [87] and have

been shown to posses a worse model selection ability in comparison to the free energy

[114].

3.5.2 Bayesian model averaging

When multiple model candidates are compared, it is often the case neither of the can-

didates stands out as clearly superior, impeding the selection of a single most suitable

model. To overcome this difficulty, this thesis will employ the process of Bayesian model

averaging (BMA). This technique omits the need to select a single model and instead

averages the inference results of individual models according to their probability of be-

ing true. It is not related to the mixed-effects modelling approach described earlier, as

the BMA technique averages across different models, independently identified from the

data y of a single subject. In this context, the individualistic approach is therefore kept,

as no information between the data from different subjects is shared. In formal terms,

BMA accounts for the model uncertainty by marginalising over individual models Mi

to derive a single posterior density of model parameters

fθ|y =
∑
i

p(Mi|y)fθ|y,Mi
, (3.49)
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independent of the model, where p(Mi|y) is the probability of any given model being

true as defined in expression (3.47) and fθ|y,Mi
the posterior density of unknown pa-

rameters from model Mi [87].

In the context of the VB approach p(Mi|y) is determined by the model evidence

P (y|Mi) (see expression 3.48) which is in turn approximated by the free energy F . To

approximate the probability of any model being true using individually inferred free

energy values Fi, the following expression is applied

p̂(Mi|y) =
exp(Fi)∑
i exp(Fi)

, (3.50)

which ensures that the approximated probabilities of individual models p̂(Mi|y) sum

to one. Note that the exponential of the free energy is taken because F represents the

logarithm of the model evidence, as demonstrated in expression (3.11) [116].

To calculate the sufficient statistics of averaged PDFs of model parameters fθ|y the

unknown parameter vector θ is split into its components ϑ, i.e. model parameters and

initial conditions, and κ, i.e. measurement uncertainty precision. For ϑ the sufficient

statistics µϑ and Σϑ of the Gaussian PDF fϑ|y are calculated as follows:

µϑ =
∑
i

p̂(Mi|y)µiϑ

Σϑ =
∑
i

p̂(Mi|y)([µiϑ − µϑ][µiϑ − µϑ]T + Σi
ϑ),

(3.51)

where µiϑ and Σi
ϑ are the sufficient statistics of the parameter estimates of the individ-

ual models.

To calculate the sufficient statistics a and b of the combined Gamma PDF fκ|y over

κ, the sufficient statistics of the individual estimates of ai and bi are first used to calcu-

late mean and variance of the respective PDFs using expression (3.36). Subsequently,

expression (3.51) is used to calculate the averaged mean and variance which are then

utilised to calculate a and b, defining fκ|y.

Lastly, the BMA framework makes it possible to combine the individual model states

xt and their uncertainty Σxt, as calculated by (3.15) and (3.46) respectively, into a

single, averaged trajectory of the model states and uncertainty using expression (3.51)

[104].
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In order to apply the full BMA approach, i.e. average across all states and param-

eters, it is necessary for the model candidates to be similar, i.e. to have the same

number of parameters and states, and only differ in the mathematical relationship be-

tween them. This obviously restricts the flexibility in model specification. Alternatively,

when the models are less similar, it is still possible to use BMA and only average across

the model output, as described in the previous paragraph, or parameters that have the

same physiological interpretation.

3.6 Statistical methods

To evaluate the results of the model identification process, e.g. model parameters, sev-

eral statistical methods will be employed. The statistical difference between groups

of interest will be assessed using the Kruskal-Wallis test. It is a non-parametric test

of whether the individual samples forming the groups are drawn from a single distri-

bution [117]. Difference testing between any groups will then be performed using the

Wilcoxon rank sum, also known as Mann-Whitney U, test. When multiple tests are

performed, Tukey’s honestly significant difference procedure will be used [118]. These

non-parametric tests are chosen because the normality of the distributions cannot be

assumed. As it is common practice in the study of glucose metabolism, the null hypoth-

esis of ”no difference between the groups“ is tested at the 0.05 significance level (e.g.

[47, 75–77]).



Chapter 4

Bayesian oral minimal model

identification from mixed meal

glucose and insulin responses in

NGT subjects

4.1 Introduction

This chapter aims to identify the oral minimal model (OMM) selected in section 2.3 in

order to estimate insulin sensitivity and meal-related rate of glucose appearance (GA)

using a dataset containing glucose and insulin profiles from normal glucose tolerant

(NGT) subjects. These results will subsequently be analysed with respect to the im-

pact of meal composition, time of meal consumption and subject sex on these quantities.

The novelty of this work will be given by (1) adapting the OMM for the identifica-

tion from non-fasting conditions, i.e incorporate the effects of a previously consumed

meal, (2) demonstrating a novel structural identifiability result and (3) utilising the

VB approach for parameter estimation. These adaptations are subsequently verified by

comparing the results to published studies using the conventional approach for identify-

ing the OMM. Before that, the conventional formulation of the OMM and identification

approach is introduced.

48
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4.2 The oral minimal model

The oral minimal model (OMM) of glucose dynamics was proposed in 2002 by Dalla Man

et al. [71] and is based on an earlier model often referred to as the minimal model, which

was developed for the description of glucose excursions during an intravenous glucose

tolerance test (IVGTT) [119]. In contrast, the OMM describes OGTT and mixed meal

responses and is formulated in a state-space representation with the following equations

[71]

dG(t)

dt
= −G(t)X(t)− p1[G(t)−Gb] +

RaPL(t)

V
, G(0) = Gb (4.1)

dX(t)

dt
= −p2X(t) + p3[I(t)− Ib] X(0) = 0, (4.2)

with

RaPL(t) =


ki−1 +

ki − ki−1
ti − ti−1

(t− ti−1) for ti−1 ≤ t ≤ ti i = 1 . . . n,

0 for t > tn.

(4.3)

The glucose concentration and its basal (pre-test) level in mmol/L are represented

by G(t) and Gb, respectively. The state X(t) in min-1 represents the insulin action

in a remote (from plasma) compartment and governs insulin action in both the liver

and peripheral tissues. Its initial condition X(0) is assumed to be zero because all

meal tests are typically carried out from a fasted state. The parameter p1 in min-1

controls the ability of glucose to affect its own metabolism and is known as glucose ef-

fectiveness. This part of the model represents the insulin-independent aspect of glucose

metabolism taking place, e.g. in the brain. The nonlinear term −G(t)X(t) in equation

(4.1) requires no rate coefficient due to the units of X(t) and represents the insulin and

glucose-dependent regulation of glucose. V with units L/kg represents the distribution

volume of glucose relative to body weight. The glucose appearance in mmol/kg/min,

described by function RaPL, is the only difference to the IVGTT minimal model and is

formulated as a piecewise-linear function (4.3). The n breakpoints are located at times

t0 − tn in min with adjustable heights of k0 − kn in mmol/kg/min [71]. An example of

the function RaPL is provided in Figure 4.1. The specific number and locations of the

breakpoints are adapted according to the experimental protocol and will be specified

later.
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Figure 4.1: Example of the glucose appearance (GA) for three consecutive meals
modelled as the sum of functions RaPL(t) and Rap(t) over the course of the modelled
duration. The dotted lines represent the persisting absorption Rap during lunch and
dinner. The dotted vertical lines indicate the time of meal consumption.

In order to avoid modelling the dynamics of glucose clearance and insulin secretion

simultaneously, which could introduce a bias in insulin sensitivity through errors in

model formulation, glucose and insulin systems are partitioned through the “loop cut”

principle [7]. In the case of the OMM of glucose dynamics, the insulin concentration

I(t) and its basal (pre-test) level Ib in mU/L are considered to be known inputs [71].

This procedure has been criticised as it assumes the measured insulin concentration to

be error free as well as disregarding the feedback effects between glucose and insulin

levels [13].

In expression (4.2), the parameter p2 in min-1 governs the intrinsic dynamics of the

insulin action state X(t). The parameter p3 in min-2 per mU/L determines the amount

of plasma insulin I(t) above baseline Ib that contributes to the insulin action X(t)

which in turn affects the glucose metabolism in equation (4.1). The insulin sensitivity

is subsequently given by the ratio p3/p2. This is shown below by using its formal

definition from expression (2.1). Here it is assumed that the (negative) rate of change

in the glucose concentrations (4.1) can be used as a proxy for the glucose clearance rate

(GCR) [119], so that

∂

∂I

[
∂GCR

∂G

]
=

∂

∂I(t)

[
∂

∂G(t)

(
−dG(t)

dt

)]
=

∂

∂I(t)
[X(t) + p1]

=
∂

∂I(t)

[
− 1

p2

dX(t)

dt
+
p3
p2

(I(t)− Ib) + p1

]
=
p3
p2
.

(4.4)

In terms of parameter estimation, the IVGTT minimal model, which is identical in

structure to the OMM except for expression (4.3), is typically identified with Bayesian
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techniques as they have been shown to produce superior results in comparison to fre-

quentist approaches [88–90, 120, 121]. In contrast, the most frequently used method to

identify the OMM involves a commercial software package called SAAM II [122] (e.g.

[71–73, 77, 123–126]), which employs a maximum likelihood, i.e. frequentist approach

[127]. This method, however, gives the option to incorporate prior information and

restrict individual parameters using a normal distribution [122]. This is referred to

as “maximum a posteriori Bayesian estimation” [71], but cannot be considered to be

equivalent to a fully Bayesian approach, where every parameter is modelled and esti-

mated using a PDF. The approach in SAAM II instead gives single value estimates for

the unknown parameters, as is common in all frequentist approaches. As mentioned in

section 3.3, the associated parameter uncertainties are subsequently approximated from

the inverse of the Fisher information matrix [127].

Using this frequentist approach for estimation of parameters in the OMM stands

somewhat in contradiction to the full Bayesian methods used for the very similar IVGTT

minimal model. To resolve this, this chapter will use the fully Bayesian VB method to

estimate the parameters in the OMM.

4.3 Data description

The dataset utilised in this chapter was collected by Ahmed et al. [128] in 1976 and

Nuttall et al. [29] in 1985 (collectively referred to as Nuttall dataset). It contains

plasma glucose and insulin profiles from 26 young subjects (14 males, 12 females) with

NGT, collected over 12 hours in a single day from 08:15 to 20:30. A total of three iden-

tical meals each providing 33 % of the total estimated daily calorie requirement were

consumed at 08:30 (breakfast), 12:30 (lunch) and 16:30 (dinner), hereafter referred to

as daily meals. Subjects took between 20 and 30 minutes to consume the meals. Blood

samples were collected at the same time in each subject after meal consumption at 0,

2, 5, 10, 20, 30, 40, 50, 60 min, then every 15 min up to 120 min and then every 30 min

up to 240 min. One additional fasting sample was collected before the consumption of

breakfast, i.e. at -15 min. The coefficient of variation (CV) of the plasma glucose and

insulin assays are given by 1.5 and 13.4 %, respectively [128].

Data from three different meal compositions, referred to as meal types, were used.

The meals were consumed by three different subject cohorts assembled from the overall
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population (see Table 4.1 for details), leading to a total of 33 glucose and insulin profiles.

The first meal type was considered to be a standard diet (STAND) in 1980 according

to the National Academy of Sciences of the USA [129]. In comparison, the second meal

type is higher in CHO content (HCHO) and the third meal higher in protein content

(HPROT). Despite these rather extreme variations in composition, the meals were con-

sidered to be “easily attainable by individuals in everyday living” [29]. The details of

the meal composition are given in Table 4.1.

Table 4.1: Details on the subject populations and different meal types containing
standard (STAND), high carbohydrate (HCHO) and high protein (HPROT) mixtures
of macronutrient content. The meal composition is given in percentage of calories
contained in the respective macronutrient content. The data are given as mean ±
standard error and were taken from [29]

STAND HCHO HPROT

No. of subjects
(females)

12 (5) 10 (4) 11 (5)

Age 23 ± 1 25 ± 3 25 ± 2

Body weight (females)
[kg]

76 ± 5
(59 ± 1)

77 ± 4
(59 ± 5)

80 ± 3
(57 ± 3)

Meal composition
[% CHO/Fat/Protein]

40/49/11 63/27/10 19/40/41

CHO per meal (females)
[g/kg body weight]

1.2 (1.1) 2 (1.8) 0.6 (0.5)

Calories per meal (females)
[kcal/kg body weight]

13 (11) 13 (11) 13 (11)

The absolute amount of macronutrients provided was scaled according to the body

weight of each individual subject. Additionally, female subjects received 12.5 % fewer

calories per body weight to account for the sex differences in average body composition

and therefore lean mass [129]. This is justified by the fact that lean mass is the main

site of calorie consumption and substrate oxidization [130] and leads to slightly different

meal characteristics between male and female subjects (Table 4.1). This adjustment is

essential to make the results between male and female subjects comparable.

The Nuttall dataset is displayed in Figure 4.2 where the difference in response ac-

cording to the meal type is apparent. The dataset fulfils all of the requirements stated

in the first objective of this thesis for NGT subjects and will be utilised in Chapters 5
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and 6.

Figure 4.2: Glucose (top) and insulin (bottom) level profiles recorded in the Nuttall
dataset for the three meal types. The profiles are given as median and interquartile
range. The dashed vertical lines give the times of meal consumption.

4.4 Methods and modelling

4.4.1 Data analysis

In order to ensure the comparability between meal type and sex, a statistical analysis

comparing fasting glucose and insulin levels between groups of interest is carried out.

Fasting levels are calculated by averaging the results from the -15, 0, 2 and 5 min

samples to counteract measurement errors.

4.4.2 Model formulation

In comparison to the conventional formulation of the OMM presented earlier in this

chapter, the following adapted formulation is proposed

dG(t)

dt
= −G(t)X(t)− p1[G(t)−Gb] +

RaPL(t) +Rap(t)

V
, G(0) = G0, (4.5)

dX(t)

dt
= −p2 [X(t) + SI [I(t)− Ib]] , X(0) = X0, (4.6)
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where

RaPL(t) =


ki−1 +

ki − ki−1
ti − ti−1

(t− ti−1) for ti−1 ≤ t ≤ ti i = 1 . . . 7,

k7 exp(−α(t− t7)) for t > t7.

(4.7)

The interpretation and units of model states and parameters remains unchanged in com-

parison to the conventional formulation of the OMM: G(t), X(t) and I(t) represent the

glucose concentration, insulin action and (known) insulin concentration, respectively.

Parameters p1, p2, and V represent the glucose effectiveness, dynamic parameter for

X(t) and glucose distribution volume, respectively. The new adaptations are as follows

1. Due to the importance of the insulin sensitivity parameter SI in min-1 per mu/L,

it is directly included in the model rather than being the ratio of other parameters.

This facilitates the definition and interpretation of the parameter PDF within the

VB scheme.

2. To adhere to the experimental protocol of the Nuttall dataset and account for

overlapping effects between meals, basal (Gb, Ib) and initial (G0, X0) values are

characterised by separate, but known, parameters and fixed for every subject

individually. Gb and Ib reflect the previously calculated fasting levels and are

fixed over the entire duration covered by the dataset (12 hours). A recalculation

of basal levels before every daily meal is unfeasible because it cannot be assumed

that basal levels are reached before the next meal is consumed. To counteract this,

the initial conditions G0 and X0 are reset for every meal, where G0 is calculated

as the average of the 0, 2 and 5 min samples. A similar approach for X0 is not

possible as this state is not directly observed, but inferred, by the model. As for

the conventional OMM formulation, X0 is set to 0 before breakfast, assuming no

active insulin due to the fasting state of the subjects. For the subsequent meals

(lunch and dinner) this assumption cannot be justified, so X0 is set to the last

inferred value from the previous meal, i.e. X(240).

3. To define the piecewise-linear function RaPL the number and positions of break-

points in expression (4.7) have to be chosen in accordance with the response

duration of 240 min. In this work, RaPL contains eight fixed breakpoints, located

at 0, 10, 30, 60, 90, 120, 180 and 240 minutes, (t0− t7), with heights k0− k7. The

height at time zero, i.e. k0, is fixed to zero. After the end of the meal period,
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i.e. 240 min, the function is modelled by a monoexponential decay with rate α,

fixed at 0.017 min-1 (equivalent to a half-life of circa 41 minutes) as suggested

by Dalla Man et al. (2002) [71] for response durations shorter than 6 hours.

This means that, for lunch and dinner, there is a persisting absorption from the

previous meal overlapping with the glucose appearance of the current meal (see

Figure 4.1). Following that, the total appearance in (4.5) is modelled as the sum

of the appearance from the current meal and the remaining appearance from the

previous meal Rap(t). This persisting absorption is calculated by extending the

absorption from the previous meal beyond the response duration of 240 min, i.e.

Rap(t) = RaPL(t + 240). An example of the modelled glucose appearance, i.e.

the function RaPL is shown in Figure 4.1.

The procedure to account for the overlapping effects between meals is depicted schemat-

ically in Figure 4.3.

Figure 4.3: Schematic depiction of the procedure to account for the overlapping effects
between meals.

Following the general model formulation given in section 3.1, the glucose measure-

ment process is modelled as follows

y(t) = G(t) + ε with ε ∼ N (0, λ2), (4.8)

where y(t) is the observed plasma glucose concentration and ε is the additive, normally

distributed measurement error with zero mean and standard deviation λ, the use of

which has been justified in section 3.1. Following the conventional approach and due

to the well-established, highly accurate glucose measurement process, the measurement

error is fixed based CV of the glucose assay not updated during parameter estimation

[71]. In order to ensure comparability to the literature a CV of 2 % [71, 72, 77], instead
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of the 1.5 % given for the Nuttall dataset, is used. Based on a mean BG level of 5.5

mmol/L across the Nuttal dataset and a measurement error CV of 2 %, the PDF over

λ is characterised with a mean of 0.11 mmol/L and a CV of 10 %. This PDF over

λ is then transformed into a PDF over the measurement noise precision κ using the

procedure described in section 3.3.2.2.

To aid estimation of the GA parameters and include knowledge about the consumed

food, Dalla Man et al. (2002) [71] have suggested that the area under the curve (AUC)

of glucose absorption A is constrained based on the amount of CHO contained in the

meal, and given by the following expression (see Appendix A.2 for the derivation):

A =

∫ ∞
0

RaPL(t)dt =
1

2

7∑
i=1

(ti − ti−1)(ki + ki−1) +
k7
α

= D · f. (4.9)

where D is the amount of glucose in the meal per kg of body weight, known from the

experimental details, and f is the fraction of ingested glucose that enters the peripheral

circulation. If the value of f is assumed to be known (see Table 4.2 for the value) as

suggested by Dalla Man et al. (2002) [71], one of the height parameters defining RaPL

becomes obsolete. In this work, the height k6 of the breakpoint at 180 min is chosen to

be replaced by the following expression

k6 =
1

60α
[D · f · α− k7 − 5α · (3k1 + 5k2 + 6k3 + 6k4 + 9k5 + 6k7)]. (4.10)

This is the result of rearranging expression (4.9) and inserting the specific values for t0

to t7. The choice to replace k6 is based on results reported by Dalla Man et al. (2002)

[71], showing that the mean inferred value of GA at 180 min lies linearly between 120

and 240 min, indicating a minor influence on glucose absorption dynamics.

4.4.3 Structural identifiability analysis

In their publication, Dalla Man et al. (2002) [71] presented a structural identifiability

analysis using the previously introduced Taylor series approach on the conventional for-

mulation of the OMM provided in section 4.2. Calculating the first three Taylor series

coefficients, it was shown that only the ratios ki/V for all i are identifiable, conclud-

ing that the distribution volume V should be fixed to a known value. To evaluate the

identifiability of the remaining parameters p1, p2 and p3, three additional Taylor series

coefficients were calculated. These could then be reduced to a system of two equations
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with three unknown parameters which led to the conclusion that p1, p2 and p3 are only

structurally locally identifiable. This issue was resolved by assuming the parameter p1

to be known, thus making the remaining parameters p2 and p3 structurally globally

identifiable. This result has been used by all studies utilising the OMM (e.g. [71–73,

77, 123–126]) as well as being explicitly mentioned in the review papers [7, 13, 74] and

a textbook [8].

Using a software tool named DAISY, Saccomani et al. [131] give the result that pa-

rameters p1, p2 and p3 are all globally identifiable. DAISY utilises differential algebra

approach combined with a random number based numerical optimisation to test for

global identifiability [132]. Saccomani et al. hypothesised that the discrepancy with the

initial result might arise from the fact that the Taylor series expansion was truncated

too early [131].

In this thesis, the conjecture formulated by Saccomani et al. [131] can be confirmed

by combining the Taylor series approach with symbolic computation. Using one ad-

ditional Taylor coefficient, i.e. a total of seven, allows for a unique solution for the

unknown parameters, therefore showing that the parameters p1, p2 and p3 are all struc-

turally globally identifiable. This disproves the earlier results of Dalla Man et al. (2002)

[71]. In this context, it should be mentioned that the corresponding results, i.e. the

structural global identifiability of p1, p2 and p3, were obtained for the IVGTT minimal

model [133]. Here, Chin et al. [133] also highlighted the fact that the structural iden-

tifiability of parameter p2 is dependant on the knowledge of higher order derivatives of

the insulin concentration time profile.

The details of the identifiability analysis are presented in Appendix B.2.1 and B.2.2.

In Appendix B.2.1, the OMM is first taken in its conventional form (4.1) - (4.3) and the

new structural identifiability results are shown. Appendix B.2.2 confirms these results

for the altered formulation of the OMM (4.5) - (4.7) presented in this chapter. The

result is that parameters p1, p2, SI , k1, k2, k3, k4, k5 and k7 are all globally identifiable

if the distribution volume V is assumed to be known.

4.4.4 Choice of prior distributions

The VB approach requires suitable prior distributions for the unknown parameters, i.e.

p1, p2, SI , k1, k2, k3, k4, k5 and k7, which are defined based on existing information.
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Additionally, values for the fixed parameters V and f have to be set. For that, the

results of a study by Dalla Man et al. (2004) [72] are utilised. This study used addi-

tional data from traced glucose to estimate all unknown model parameters of the OMM

including p1, V and f in 88 NGT subjects consuming mixed meals.

The system parameters p1, p2 and SI have to be positive as they would lead to

unstable model behaviour otherwise. Similarly, the heights of the input function break-

points have to be positive because negative GA rates are physiologically implausible.

All parameters are thus constrained to be positive through the exponential mapping

explained in section 3.3.2.2, making them log-normally distributed. The choice of the

prior medians and CVs will be justified in the following sections. For that, the results

from the study by Dalla Man et al. (2004) [72], mentioned in the previous paragraph,

are used to compare the observed population distributions over parameters p1, p2 and

SI , with the respective prior distributions chosen in this thesis. Here, the goal is not

to match the population densities exactly, but instead ensure that the chosen prior dis-

tributions assign the large majority of parameter values observed in the population a

suitable probability density. The details of prior distributions for all inferred param-

eters are given in Table 4.2, together with the values of the fixed parameters. These

fixed parameters were either directly calculated from the information contained in the

dataset or are based on recommended values from the literature.

Table 4.2: Details on the unknown model parameters, their prior distributions and
fixed values used in the identification of the OMM. The prior distributions are log-
normally distributed and specified as median ± coefficient of variation (CV) in %.

Parameter Unit Prior
median ± CV %

Description

p1 min-1 0.025 ± [0, 25,
50,100] [72]

Glucose effectiveness

p2 min-1 0.012 ± 40 [72] Rate constant governing the
decay of X(t)

SI
10-4 min-1

per mU/L
7.1 ± 100 [72] Insulin sensitivity

k1, k2, k3,
k4, k5 and k7

µmol/kg/min [3.2, 7.3, 5.4, 5.1,
3.7, 1.8] ± 50 [72]

Levels of GA at time of break-
points. The priors are scaled
by D · f to account for the
different meal types

V L/kg 0.145 (fixed) [72] Glucose distribution volume
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λ mmol/L 0.11 ± 10 (fixed) Standard deviation of measure-
ment error

t0 - t7 min
[0, 10, 30, 60, 90,
120, 180, 240]
(fixed) [71]

Times of breakpoints

α min-1 0.017 (fixed) [71] Decay rate of RaPL after
240 min

f - 0.9 (fixed) [72] Fraction of ingested glucose that
is absorbed

D mmol/kg (fixed) Amount of CHO per kg of body
weight (see Table 4.1)

4.4.4.1 Parameter p1

In light of the novel structural identifiability results obtained regarding the parameter

p1 describing the glucose effectiveness, its impact on the parameter estimation as a

whole has to be examined. This is accomplished by repeating the parameter estimation

procedure with four different levels of prior uncertainty, i.e. a prior CV of 0 (fixed), 25,

50 and 100 %. The median is kept the same at 0.025 min-1 in all cases, representing

the recommend fixed value [72]. A comparison between the different prior distributions

and the population distribution from [72] is shown in Figure 4.4.

Figure 4.4: Comparison of the observed population distribution for the parameter p1
by Dalla Man et al. (2004) [72], and the selected prior distributions over p1 considered
in this work.

4.4.4.2 Parameter p2

The parameter p2, governing the intrinsic dynamics of the state X(t) is the only param-

eter constrained by a Gaussian prior in the context of using the previously mentioned
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SAAM II software tool. Specifically, it has been suggested to define a prior distribution

over the square root of p2 with a mean of 0.11 min-1/2 and small CV of 10 %. This

was justified by the fact that, unlike p2 itself, the square root of p2 follows a normal

population distribution. Additionally, the very narrow prior distribution was justified

by the fact that poor posterior precisions were obtained when wider priors were used [72].

Using these values and applying the previously used theorem (3.21) for the transfor-

mation of PDFs, it can be shown that the resulting prior distribution over p2 is rather

complex and can be approximated to have mean of 0.012 min-1 and a CV of 20 % (see

Appendix A.3 for the derivations). We propose to use the more tractable exponential

mapping resulting in a log-normal distribution over p2. Additionally, a larger CV of 40

% is adopted to better reflect the population distribution from [72]. A comparison of

the respective distributions is shown in Figure 4.5 .

Figure 4.5: Comparison of the observed population distribution for the parameter p2
by Dalla Man et al. (2004) [72], the subsequently used prior distribution and the prior
distribution suggested in this work.

4.4.4.3 Parameter SI

The median for the prior distribution of SI , representing insulin sensitivity, is based

on the population median of SI in [72]. Taking the differences in insulin measurement

techniques into account, a larger CV of 100 % in comparison to the population CV of

55 % is chosen in this thesis . This can account for any bias caused by the differences

in insulin measurement methods. The chosen prior distribution in comparison to the

population results in [72] is shown in Figure 4.6



Chapter 4. Oral minimal model identification 61

Figure 4.6: Comparison of the observed population distribution of the insulin sen-
sitivity SI multiplied by the distribution volume V by Dalla Man et al. (2004) [72]
and the prior distribution suggested in this work. The prior was scaled to represent a
distribution over SI · V solely to be comparable with the reported results.

4.4.4.4 Parameters k1 to k7

The medians for the prior distributions of the input function parameters k1, k2, k3, k4,

k5 and k7 are based on the population medians in [72]. The values are scaled according

to the glucose content of the meals so that only the shape, but not the AUC, is con-

served. The CVs of the prior distributions are set to be 50 % based on the population

results in [72]. An example of the prior shape of RaPL is shown in Figure 4.1.

4.4.4.5 Influence on the model output

In order to demonstrate the influence of the individual parameters and their prior dis-

tributions on the model output, several model simulations were carried out. For that,

the value of one parameter is varied at a time across the two-sigma range of its prior dis-

tribution, while the other parameters are kept fixed at their prior medians. The results

are given in Figure 4.7. For the system parameters in plots (a) - (c), it is shown that the

parameters p1 and p2 have a similar effect on the model output and that the parameter

SI has the greatest effect on the overall model output. Regarding the input parameters

in plots (d) - (h), it is demonstrated that the different parameters influence different

time periods of the response. Furthermore, the influence of fixing the total AUC of

RaPL is shown by the fact that a change in all input parameters affects the model

output after the 180 min because it is the breakpoint height k6 which is dependant on

all other input function parameters as described by expression (4.10).
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Figure 4.7: Influence of the individual model parameters p1, p2, SI , k1, k2, k3, k4,
k5 and k7 (a)-(h) on the model output of the OMM. The value of one parameter is
varied at a time across the two-sigma range of its prior distribution, while the other
parameters are kept fixed at their prior medians. The colours indicate the increasing
parameter values from blue to red and the black lines indicate the responses from the
prior medians. A prior CV of 25% was used for parameter p1 in (a). As the insulin
input, the averaged insulin profile from the STAND meal was used.

4.4.5 Parameter estimation procedure

One set of unknown parameters is estimated from every single meal response in the Nut-

tall dataset using the VB approach. The implementation details of the model and its

priors within the VB toolbox are given in Appendix C.1.1. Furthermore, the associated

MATLAB code is published online (https://github.com/manueich/VBA-OMM). The

model is fully implemented with the piecewise linear definition of the function RaPL, so

that the model equations (4.5) - (4.7) can be solved over the entire response duration

and all parameters can be estimated simultaneously. In order to provide the insulin

concentration profile as known input, it is linearly interpolated from the measurement

time points over the integration time step of 0.1 minutes.
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4.4.6 Validation of the parameter estimation procedure

The validation of the parameter estimation procedure is carried out in two steps. In

the light of the novel structural identifiability results for parameter p1, the first step

examines the impact of an adjustable parameter p1 on the estimation results. For that,

the estimation procedure is repeated with different prior uncertainties of p1, i.e. a CV

of 0 (fixed), 25, 50 and 100 %, as previously described. The most suitable prior is then

selected according the following criteria: (1) the free energy, as it can judge whether the

added complexity from including p1 as a parameter is justified by an improved model

fit, (2) the root mean squared error (RMSE) between the model output and the data,

and (3) the posterior distributions over the parameters p1 and SI , with emphasis on the

posterior CVs to assess practical identifiability. This will lead to a choice on the most

appropriate prior distribution of p1.

After the most suitable prior over p1 is selected, the second step examines the validity

of the estimation results as a whole by comparison to the results in the literature.

Included are results from studies identifying the OMM under similar conditions, i.e.

populations only consisting of NGT subjects and utilising responses from OGTT or

mixed meal tolerance tests (MTT). If provided in the selected publications, the following

inference results will be compared:

• Inferred values and precisions of the parameter p2.

• Posterior precision, i.e. the CV, of SI . Absolute values cannot be compared due to

the differences in insulin measurement methods. They are nevertheless included

to illustrate the differences in the results.

• Quality of model fit. To allow comparison to the results from the selected pub-

lications, the residuals between the model output and the data are weighted by

the measurement uncertainty characterised with a CV of 2 % and calculated from

each modelled response, with the following expression:

W i
RES =

yi −Gi
0.02 · yi

, (4.11)

where W i
RES is the value of weighted residuals calculated from the measurement

point yi and model output Gi at time point i. Subsequently, the weighted residuals

are averaged at each measurement point across all inferred responses to give a time
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profile of the averaged weighted residuals. To have a single value for comparison,

the absolute value of this time profile is calculated and subsequently characterised

by its mean and standard deviation.

4.5 Results and discussion

4.5.1 Fasting glucose and insulin

The results of analysing fasting glucose and insulin levels are displayed in Figure 4.8.

The fasting glucose levels are not significantly different between meal types, but signifi-

cantly different between sexes. This sex difference aligns with the findings from a study

examining a very large cohort (∼10 000) of the Australian population [134]. Significant

differences in fasting insulin levels are not detected. These results demonstrate that

the experimental protocol has not introduced any significant bias and shows that the

modelling results can be compared between meal types and sex.

Figure 4.8: Fasting levels of (a)-(b) glucose and (c)-(d) insulin grouped according to
meal type and sex. The p-values give the results of the Kruskal-Wallis test (meal types)
and the Wilcoxon rank-sum test (sex).

4.5.2 Parameter estimation procedure

4.5.2.1 Impact of the parameter p1

The results of the first validation step, i.e. repeating the estimation procedure with

different levels of prior uncertainty over p1, are displayed in Figure 4.9. In terms of the

mean RMSE displayed in Figure 4.9 (a), there is a minor tendency towards a decreased

error with increased prior uncertainty. This can be explained by increased flexibility in



Chapter 4. Oral minimal model identification 65

model output and therefore increased model fit. For the posterior results for p1 displayed

in Figure 4.9 (b)-(c), there is an expected increase in the variability of the medians (b)

and an increase in the posterior CV (c) along with greater prior uncertainty. In the

case of a prior CV of 25 %, there is almost no convergence to a more narrow posterior

distribution over p1, which shows that this parameter cannot be estimated beyond a

certain level of precision.

Figure 4.9: Results from identifying the OMM with different levels of prior uncer-
tainties in p1 indicated by different colours. Displayed are population boxplots of the
(a) RMSE, posterior medians and CVs of parameters (b)-(c) p1 and (d)-(e) SI . The
shaded grey areas in plots (b) and (d) indicate the log-normal prior distributions. Plot
(f) shows the share of the responses where the free energy difference between the model
with fixed p1 and the respective models with variable p1 is greater than three. The red,
yellow and green portions of the bars indicate models with variable p1 to be superior
and the blue portion the model with fixed p1 to be superior.

Regarding the posterior results for SI displayed in Figure 4.9 (d)-(e), there is only a

minor effect on the posterior medians (d), but an increase in the posterior CV (e), along

with greater prior uncertainty in p1. The parameter SI remains practically identifiable,

but the results exemplify how the uncertainty in one parameter can affect another pa-

rameter. The results of the free energy analysis displayed Figure 4.9 (f) demonstrate

that there is no significant difference in free energy between the model with fixed p1

and the models with variable p1 in the majority of cases as indicated by the bars lying

below 50 %. When a difference occurs, the models with an adjustable p1 are superior
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to the model with fixed p1 as indicated by the very small blue bar.

Overall, these results demonstrate that it is difficult to identify the glucose effec-

tiveness parameter p1 with acceptable precision in practice. This is a general weakness

of the OMM because it prohibits the interpretation of the glucose effectiveness with

respect to subject and meal characteristics. We nevertheless argue that fixing p1 to its

population median as was done in all previous works using the OMM, is not suitable.

The reasons for this are as follows: (1) it would ignore the large population variability

in p1 demonstrated in Figure 4.4, (2) it leads to an underestimation of the uncertainty

in SI demonstrated in Figure 4.9 (e), and (3) the free energy indicates the superiority

of models with an adjustable p1. It is therefore suggested to use an adjustable p1 with

a CV of 25 %. This provides the best trade-off between considering the observed pop-

ulation variability and an acceptable estimation accuracy for the insulin sensitivity SI .

4.5.2.2 Parameter estimates and correlation

Based on choosing a prior CV of 25 % over the parameter p1, the results of the pa-

rameter estimation procedure as a whole are presented in Figure 4.10. The population

distribution of the parameter p1 in plot (a) follows the prior distribution. Together with

the fact that the posterior CVs of p1 in (b) only marginally decreased from the the prior

CV of 25 % implies practical identifiability issues in this parameter, as discussed in the

previous section. In the case of the parameter p2 the population distribution in (a) has

shifted with respect to the prior PDF, indicating that the individual posterior densities

are informed by the data. The posterior CVs in Figure 4.10 (b), however, show large

variability, indicating that the parameter cannot be estimated with adequate precision

in a significant number of cases. Given these difficulties in the estimation of parameters

p1 and p2, an analysis of these parameters with respect to meal time, composition or

sex will not be carried out. In contrast, the insulin sensitivity parameter SI shows

excellent convergence to low posterior CVs with very few outliers as indicated in Figure

4.10 (b). The overall median posterior CV of SI is 5.1 % in comparison to the prior

CV of 100 %. This high estimation accuracy could be achieved despite the introduc-

tion of additional uncertainties through the adapted priors over p1 and p2, therefore

justifying the prior choices and demonstrating the aptitude of the VB model inversion

approach. A more detailed analysis of the SI estimates will be presented in section 4.5.3.
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Figure 4.10: Posterior parameter estimates of the OMM. Displayed are the popu-
lation boxplots of median and CV of the log-normal posterior distributions of (a)-(b)
system parameters and (c)-(d) input parameters, grouped according to the meal types
of standard (STAND), high CHO (HCHO) and high protein (HPROT) composition.
The shaded grey areas indicate the respective prior distributions.

The results of the posterior medians of the input parameters in Figure 4.10 (c) show

the expected differences between the meal types due to the differences in the fixed AUCs

of RaPL. The posterior CVs of the input parameters in Figure 4.10 (d) demonstrate

satisfactory convergence to more narrow posterior distributions with an overall median

of 14.3 % in comparison to the prior CV of 50 %. Of note is that the posterior CVs are

increased if the parameter median is decreased, as seen in the HPROT meal. This indi-

cates that it is difficult to estimate low glucose appearance rates with adequate precision.
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To investigate the sensitivity of the parameter estimation results with respect to the

assumptions made on the fixed values of V and f , i.e. the glucose distribution volume

and fractional glucose absorption, the model was inverted with different fixed values of

V and f , covering the range of values found in [72]. The results show that parameters

p1 and p2 are only marginally affected by changes in V and f . In contrast, the insulin

sensitivity parameter SI is highly affected with a proportional relationship to an in-

crease in f and an inverse proportional relationship to an increase in V . As was already

concluded by Dalla Man et al. (2004) [72], the fact that population values for V and f

have to be assumed impedes the accurate estimation if SI on an individual level. The

details of the results are given in Appendix D.1.

The correlation of the model parameters, assessed through the posterior covariance

matrix as described in section 3.3.2.2, is displayed in Figure 4.11. Here, the majority of

correlations are small and thus non-significant. Exceptions are the correlations between

parameter p2 and the parameters SI , k2, k3 and k7 as well as the correlations between

k7 and k3 and k4. These correlations can be partially explained by the fact that the

associated parameters have a similar effect on the model output, as demonstrated in

Figure 4.7, but do not warrant a reparameterisation of the model.

Figure 4.11: Median posterior parameter correlation matrix from the individually
estimated parameter correlation matrices of all 99 responses.

4.5.2.3 Model fit

To demonstrate the ability of the novel OMM procedure to describe the data of responses

from different meal compositions, the respective time profiles of averaged weighted resid-

uals is displayed in Figure 4.12. Here it is demonstrated that the weighted residuals
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are largely contained withing the -1 to +1 range, indicating good model fit. Of note

is a bias towards negative residuals within the first 30 min of the response. This is a

weakness of the piecewise-linear input function and will be addressed in the following

chapter. To further illustrate the model fit, an example of the model output for each

meal type is given in Figure 4.13.

Figure 4.12: Time profile of the mean and standard deviation of the weighted residuals
between the model output and data for each meal type. The solid horizontal lines
indicated a value of zero and the adjacent dashed lines the -1 to +1 range.

Figure 4.13: Examples of the model output for the three meal types of (a) stan-
dard (STAND), (b) high CHO (HCHO) and (c) high protein (HPROT) composition.
The shaded area represents the uncertainty (standard deviation) from a deterministic
sensitivity analysis and the solid black line provides the basal glucose level Gb.
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4.5.2.4 Comparison to the literature

To validate the parameter estimation procedure against the literature, we included six

studies matching the inclusion criteria of having a NGT subject population and using

data from either mixed meals [71, 72, 77, 123] or OGTT responses [125, 126]. The

comparison is provided in Table 4.3.

The number of sampling points and intervals between the Nuttall dataset and lit-

erature studies are similar making the overall estimation results comparable. This is

an important aspect to consider as the estimation precision of the parameters is typi-

cally affected by the number and position of the sampling points. As with the Nuttall

dataset, it is common to sample at irregular intervals with a tighter sampling grid at the

beginning of the test. Additionally, OGTTs allow for shorter meal durations compared

to mixed meals.

In terms of the parameter p2, only one study provides posterior results. Here, the

population standard error of point estimates and the population mean of posterior CVs

are lower. This is most likely the consequence of the more narrow prior distribution, of

20 % chosen by Dalla Man et al. (2004) [72], whereas our work utilised a CV of 40 %.

Additional to the changes in prior distributions, the bias in population point estimates

could additionally be a result of potential biases introduced by the insulin measurement

techniques.

The posterior CV of SI clearly demonstrates that insulin sensitivity can be estimated

with a precision comparable to the literature results. The absolute values of SI are very

similar in studies [71, 72, 77, 123] owing to the fact they were conducted by the same

research group and used insulin assays from the same manufacturer. When the OMM

is utilised by independent groups as it is the case in this thesis and studies [126] and

[125], differences in population means are observed, most likely due to differences in

insulin measurement methods.

The weighted residuals found in our work are very similar in comparison to the

literature results in Table 4.3. This confirms the results of the previous section and

indicates that the model fits the data with comparable accuracy.
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4.5.3 Insulin sensitivity

4.5.3.1 Differences between daily meals

To assess the differences in insulin sensitivity between daily meals, i.e. the time of meal

consumption, the results are grouped accordingly and displayed in Figure 4.14.

Figure 4.14: Boxplots of insulin sensitivity SI grouped according to meal time (break-
fast, lunch, dinner) for the (a) STAND, (b) HCHO, (c) HPROT meal types as well as
(d) all meal types combined. The p-values give the results from the Kruskal-Wallis test.

There is a significant difference in SI between daily meals (p = 0.04 according to

the Kruskal-Wallis test), suggesting a decrease in insulin sensitivity over the course

of the day. This trend is particularly noticeable in the meal type with high protein

(HPROT) and aligns with the findings from the study by Saad et al. [77]. These results

demonstrate that the proposed model identification process allows the examination of

circadian changes in insulin sensitivity using data collected with a compact protocol on

a single day. Applying this procedure to a similar dataset including T2DM subjects

could lead to useful information on the treatment of such patients [135].

4.5.3.2 Differences between meal type and sex

The differences in insulin sensitivity between the three meals of standard (STAND),

high carbohydrate (HCHO) and high protein (HPROT) as well as sex are analysed and

displayed in Figure 4.15.

The results of this analysis reveal that males have a significantly higher insulin sen-

sitivity in response to the HCHO meal and significantly lower insulin sensitivity in the

STAND and HPROT meals. Due to the almost identical protein content of the STAND
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Figure 4.15: Boxplots of insulin sensitivity SI grouped according to sex and meal
type. Differences in sex within the same meal type are assessed using the Wilcoxon
rank sum test, whereas differences in meal types within the same sex are assessed
using the Kruskal-Wallis test. The bullets (p < 0.05) and diamonds (p < 0.005) mark
significant differences and the numbers in brackets give the number of responses in each
group. The numbers below the meal types give the relative meal compositions in % of
CHO / fat / protein.

and HCHO meals of around 10 %, this indicates a strong sex difference in response

to CHO and/or fat and little difference in response to protein. This is supported by

the fact that the HPROT meal reveals a similar sex distribution to the STAND meal

despite strongly differing protein contents. The fact that these two meals (STAND and

HPROT) additionally have similar fat contents, makes it more likely that the sex differ-

ences stem from differences in response to fat rather than CHO content. Following this,

it could be concluded that females could benefit from added dietary fat as it increases

their glucose tolerance, whereas low-fat meals like the HCHO meal would be more ben-

eficial for males. This information could be very useful in the design of tailored dietary

interventions.

These results contradict a study [75] examining sex differences using the OMM in

response to a mixed meal very similar to the STAND meal from a similar study pop-

ulation. Here, Basu et al. found a significant decrease in insulin sensitivity estimates

scaled by lean body weight in females. A literature review by Magkos et al. [136]

found an inconsistent picture of whether there exist sex-related differences in free fatty

acid-induced meal insulin resistance, with more recent studies suggesting no difference.

However, these studies examined glucose and lipid metabolism under the unrealistic
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conditions of clamp experiments [136]. In contrast, the present study was conducted

under real-life conditions thus providing more practical relevance. However, it should

be emphasised that the low number of subjects in each group as well as the chosen

distribution of macronutrient content in the meals limit the explanatory power of the

results. A more detailed analysis isolating the effects of specific food contents would re-

quire further experiments with additional meal types of different macronutrient content.

4.5.4 Meal-related appearance of glucose

The inferred profiles of GA are grouped according to meal types and time of meal

consumption and are displayed in Figure 4.16. A clear pattern in the difference between

Figure 4.16: Profiles of glucose appearance (GA) grouped according to meal type
(rows) and time of meal consumption for each sex. The results are given as median and
interquartile range.

sex similar to the insulin sensitivity cannot be observed. Similarly, differences between

daily meals, i.e. meal timing, are not apparent. However, in terms of differences between

meal types, it can be observed that GA profiles from the meal high in carbohydrate

(HCHO) seem to a have a less prominent initial peak within the first 60 min, compared
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with the other meal types. This impression is reinforced when the share of glucose,

with respect to the total amount of absorbed glucose, appearing within the first 60

min of meal consumption is compared among meal types (Figure 4.17). Although not

significant, the HCHO shows a lower share of absorbed glucose compared to the other

meals.

Figure 4.17: Boxplot of the relative amount of glucose absorbed within the first 60
min, grouped according to meal type. The p-value gives the result of the Kruskal-Wallis
test.

4.6 Summary and conclusions

This chapter described the identification of a well-established model of postprandial glu-

cose metabolism from consecutive mixed meal responses in healthy subjects during a

single day. Compared to the prevalent approach for parameter estimation, a more suit-

able fully Bayesian method was applied. This required the definition of suitable prior

distributions over all unknown parameters, including a parameter previously thought

to be unidentifiable. Adaptations to the model formulation were made to account for

overlapping effects between consecutive meals, overcoming the need to assume fasting

conditions. In comparison to the literature, the estimation results showed similar preci-

sion and model fit, demonstrating the validity of the proposed alterations to the model

formulation and parameter estimation procedure. This also strengthens the legitimacy

of the analysis of insulin sensitivity and meal-related appearance of glucose. Here, it

has been shown that there are differences in insulin sensitivity depending on the time

of meal consumption, sex and meal composition.

This chapter described the OMM identification procedure in unprecedented detail.

Together with the freely available VB toolbox and the publically accessible model-

specific code, this chapter allows other research groups the opportunity to easily apply
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the OMM to their datasets, without in-depth knowledge on model identification. This

follows recent efforts to facilitate the identification of the classical minimal model based

on IVGTT data [137].

In the context of this thesis, this chapter provides crucial reference values for the

development and validation of glucose-only models. Before this development will be

described, the following chapter will propose another adaptation to the OMM. This

alteration will address the fact that the piecewise-linear function representing glucose

appearance is highly impractical for describing meal responses of varying duration for

estimation.



Chapter 5

Development of input functions in

the context of the oral minimal

modelling approach

5.1 Introduction

In the previous chapter, a novel procedure for identifying an adapted version of the

oral minimal model (OMM) from consecutive meal responses has been presented and

validated. The proposed adaptations allow identification of the model from non-fasting

conditions by accounting for overlapping effects between meals. This was partially

made possible because the associated experiments included a fixed duration between

meal intakes of four hours. Meals in everyday life, however, are typically consumed at

irregular intervals, e.g. perhaps varying the response duration between meals from two

to six hours. Applying the OMM to a dataset with such a pattern of meal consump-

tion is highly impractical. This impracticality is rooted in the specific properties of

the piecewise-linear input function the OMM uses to describe the meal-related glucose

appearance (GA) and can be made clear by the following considerations

• The piecewise-linear function describing GA has eight breakpoints at fixed loca-

tions and variable heights. This means that the times and the overall number of

breakpoints would have to be set according to the response duration, requiring

the adaptation of the function and therefore the model itself for every single meal

response. This adaptation will be exemplified in Chapter 8, where a different

77
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dataset is used.

• For response durations shorter than six hours, the remaining appearance overlap-

ping with the following meal is modelled with an exponential decay assuming a

fixed half-life. Fixing this decay parameter can no longer be justified for all pos-

sible meal response durations and would require individual adjustment as well. It

would thus be advantageous to infer the behaviour of GA beyond the response

duration during model inversion.

• The AUC of the function, representing the amount of absorbed glucose is fixed by

replacing one of the height parameters with an expression based on the remaining

parameters and the AUC itself (see section 4.4.2). The choice of the replaced

height would again have to be adapted based on the response duration. As it

will be demonstrated later in this chapter, this procedure also provides no mecha-

nism for the chosen height to remain positive, which could lead to physiologically

implausible absorption rates.

In the light of these issues, the main objective of this chapter is to develop and se-

lect an appropriate alternative to the piecewise linear description of GA in the context

of modelling consecutive meals of varying response duration using the OMM. This is

crucial for the description of glucose dynamics from real-word data and will mainly be

achieved by moving from a piecewise to a differentiable, continuous description that

is independent of response duration. Several candidates of increasing complexity will

be prosed based on models in the literature. Subsequently, the OMM, in combination

with the proposed input functions, will be identified using the Nuttall dataset previ-

ously analysed. The final selection of the alternative input will then be based on the

quality of the model fit and similarity to the conventional piecewise-linear function has

in comparison to the results presented in the previous chapter.

5.2 Literature background

Chapter 2 provided general information on meal-related glucose appearance and its

measurement. In terms of a model-based description of GA, there are two separate

approaches. The first approach involves modelling the physiology of digestion with

varying detail. This is most often the case when direct experimental data for GA are
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available for model identification or in the context of a maximal modelling approach,

i.e. a fine-grained simulation model not identified from data [51]. The second approach

is far more suitable for the modelling task in this thesis because it can be used when

glucose and insulin data or glucose data only are available. This data-driven approach

formulates a direct, parametric description of GA and omits a detailed characterisation

of digestion physiology. Within this approach, it is possible to distinguish between the

use of discontinuous or non-differentiable functions (see Figure 5.1 (a)), and fully differ-

entiable functions (see Figure 5.1 (b)). The former category contains functions requiring

different formulations over the time course of the meal response. The piecewise-linear

function used in the OMM [71] falls into this category as well as the stepwise plateau

functions proposed in two other studies [65, 138]. While this type of function offers high

flexibility, they can cause several problems when consecutive meals of varying response

duration are modelled, as explained before.

Figure 5.1: Example plots of the (a) non-differentiable and (b) differentiable input
functions used in the literature. The stepwise plateau function is based on the results
from Choy et al. [138]. For illustrative purposes, the functions peak at the same time
of 60 min and are scaled to have the same AUC of 10.

In contrast to the discontinuous or non-differentiable functions, differentiable func-

tions have a single definition over the entire response duration and have thus none of

the disadvantages previously mentioned. Additional to being differentiable at all times,

these functions must fulfil the following requirements

• High flexibility with a number of parameters smaller or equal to the number of

parameters in the piecewise-linear function used by the OMM, i.e. six or less.

• The area under the input function on the time interval [0,∞) has to be described
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by a single parameter that can be related to the carbohydrate (CHO) content of

the meal.

• The function has to be restricted to positive values to avoid negative and therefore

unphysiological absorption rates.

• The function has to take the value zero at time zero.

From the literature, three function types fulfilling these criteria were identified and

are summarised in Table 5.1. Example plots of the functions are provided in Figure 5.1

(b).

Table 5.1: Summary of differentiable functions describing the meal-related appearance
of glucose identified from the literature.

Name Functional form Description

Hovorka
t

T 2
exp

(
− t

T

)
The function is defined by a single param-
eter T , describing the time of peak absorp-
tion. It is the impulse response of a linear
second-order model of absorption. It was
proposed by Hovorka et al. [139] and has
since been used in several models [91, 140,
141].

Rayleigh
t

T 2
exp

(
− t2

2T 2

)
The function is defined by a single param-
eter T , describing the time of peak absorp-
tion. It is based on the Rayleigh PDF and
used in a number of models [26, 142, 143].

Log-normal
1

tW
exp

−
[
log

t

T

]2
2W 2

 The function is based on a log-normal dis-
tribution and is defined by a timing pa-
rameter T and width parameter W [143].

Additional to the functions in Table 5.1, we proposed the combination of two Gaussian-

shaped components as an input function to a linear glucose-only model (more details

in the following chapter) [144]. It was shown that the proposed input function allows

the simple linear model to describe complex, multiphasic glucose responses in NGT

subjects. An application of this input function as GA in the context of the OMM is

however not suitable, because the Gaussian function does not fulfil the previously spec-

ified property of taking the value zero at t = 0 as demonstrated in Figure 5.1 (b).
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5.3 Methods and modelling

5.3.1 Development of input functions

From Figure 5.1 it is evident that the differentiable functions on their own have a far

less flexible shape, compared to the piecewise-linear and the stepwise plateau functions.

Experimentally observed GA profiles from mixed meals often display two phases char-

acterised by a secondary hump after the initial peak [45, 50, 51]. It is thus suggested

to create a flexible input function shape by superimposing two differentiable functions

with different peak times, creating a single function composed of two overlapping com-

ponents.

The proposed functions are created by combining the Rayleigh and log-normal func-

tions in different variations. Hovorka’s function is not considered because it is similar to

the Rayleigh function, but shows a slower decay after its peak (see Figure 5.1), making

it less suitable when two functional components are superimposed. Overall, a total of

three different functions of increasing complexity, as indicated by an increased number

of parameters, consisting of the summations of two functions are proposed.

Before the three functions are presented, the individual components are defined. The

functional component based on the Rayleigh distribution is formulated as follows

FR(t, T ) =
t

T 2
exp

(
− t2

2T 2

)
. (5.1)

The variable T describes the peak time and the function is parameterised so that its

integral over the time interval [0,∞) is one. This means that the AUC can be defined

with a single coefficient.

The functional component based on a log-normal distribution is formulated as fol-

lows:

FLN (t, T,W ) =



0 for t = 0

1

t
√
πW

exp

−
(

log
t

T
− W

2

)2

W

 for t > 0
(5.2)

This formulation is slightly different from Li’s original formulation [143]. It was adapted

so that the parameter T represents the peak time and the function integrates to one

over the time interval [0,∞). The parameter W has no units and governs the general
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width of the function. The details of this derivation are given in Appendix A.4.

It should be mentioned that for both functional forms, the width increases along

with the peak time. The log-normal shaped function, however, offers an additional

parameter to control the width independently. An important distinction between the

two suggested functional components (5.1) and (5.2) is that the log-normal component

includes a delay between the time of meal consumption, i.e. at t = 0, and the rise of

glucose appearance, as exemplified in Figure 5.1. This gives the function more flexi-

bility at the beginning of the response because the time delay can be adapted through

the parameters. This is physiologically plausible because it takes time for the ingested

CHO to pass through the stomach and gut and appear in the peripheral circulation [51].

Based on the two selected functional components, three different input functions of

increasing complexity and fixed AUC are proposed as detailed in Table 5.2 on the next

page. Each function consists of two components that both share the total AUC of A.

Identical to the approach used in the piecewise-linear function in the previous chapter,

A is fixed and calculated from the CHO content of the meal and the known fractional

absorption of 0.9. This allows the introduction of the parameter RH , which controls the

relative contributions of the two input function components. As explained in section

3.3.2.2, restricting RH to the range (0, 1) ensures that all proposed input functions

can only take positive values. These functions, therefore, fulfil all the above-named

requirements. An example plot of all three functions is provided in Figure 5.2.

Figure 5.2: Plots of prior shapes for the STAND meal of the three proposed input
functions (a) RaR, (b) RaRLN and (c) RaLN . Included are the two components and
the prior shape of the piecewise linear function RaPL used in Chapter 4
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Table 5.2: Proposed input functions based on the Rayleigh and log-normal compo-
nents. The parameter A describes the total AUC which can be based on the CHO
content of the meal and the parameter RH represents the ratio between the AUCs of
the two components. The two functions with a log-normal component are defined to be
zero at t = 0.

Function Unknown parameters

Rayleigh + Rayleigh

RaR(t) = A(1−RH)F 1
R(t, T1) +ARHF

2
R(t, T2)

= A(1−RH)
t

T1
2 exp

(
− t2

T1
2

)
+ARH

t

T2
2 exp

(
− t2

T2
2

) RH , T1, T2

Rayleigh + Log-normal

RaRLN (t) = A(1−RH)F 1
R(t, T1) +ARHF

2
LN (t, T2,W2)

= A(1−RH)
t

T1
2 exp

(
− t2

T1
2

)

+ARH
1

t
√
πW2

exp

−
(

log
t

T2
− W2

2

)2

W2


RH , T1, T2, W2

Log-normal + Log-normal

RaLN (t) = A(1−RH)F 1
LN (t, T1,W1) +ARHF

2
LN (t, T2,W2)

= A(1−RH)
1

t
√
πW1

exp

−
(

log
t

T1
− W1

2

)2

W1



+ARH
1

t
√
πW2

exp

−
(

log
t

T2
− W2

2

)2

W2


RH , T1, T2, W1, W2



Chapter 5. Development of input functions for the OMM 84

5.3.2 Structural identifiability analysis

To analyse the structural identifiability of the OMM with the new input functions,

the Taylor series and the OCR methods described in section 3.2 are used. The model

equations of the OMM are as follows

dG(t)

dt
= −G(t)X(t)− p1[G(t)−Gb] +

Ra(t) +Rap(t)

V
, G(0) = G0, (5.3)

dX(t)

dt
= −p2(X(t) + SI [I(t)− Ib]), X(0) = X0, (5.4)

Rap(t) = R0 exp(−αt), (5.5)

where the function Ra(t) can be any of the three newly proposed functions in Table

5.2. For all input functions, the parameters V , Gb, G0, X0 and Ib are considered to

be known. The persisting absorption Rap is defined by known parameters R0 and α.

Subject of the structural identifiability analysis are the system parameters p1, p2 and

SI and the parameters of the respective input functions detailed in Table 5.2. To give

independent evidence for the validity of the structural identifiability results presented

below, the practical identifiability of the input function parameters will be assessed by

examining the posterior CVs as explained in section 3.4.

5.3.2.1 Input function RaR

For the OMM in combination with the input function RaR in Table 5.2, consisting

of two Rayleigh components, the Taylor series method is initially used. For that it is

assumed that I(0) = Ib and eight Taylor series coefficients are calculated. The result-

ing system of equations leads to a total of eight solutions, which indicates structural

local identifiability in some parameters. The same result is achieved with nine and ten

Taylor series coefficients, whereas the symbolic computation no longer completes for a

higher number of coefficients. This provides additional evidence for the structural local

identifiability of some parameters and is confirmed with the ORC method, where all

parameters are determined to be structurally locally identifiable (see Appendix B.2.3.2

for the details).

A more detailed look into the eight solutions of the Taylor series method reveals

that the solutions for the system parameters p1, p2 and SI are identical, indicating

structural global identifiability. The eight solutions stem from different combinations of

input function parameters RH , T1 and T2. These arise from the fact that T1 and T2 are
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squared giving two solutions each (T1, −T1 and T2, −T2) and the two input components

are identical, meaning that it is possible to switch the order of the components for the

same overall shape. The details of the symbolic computation are given in Appendix

B.2.3.1. Restricting parameters T1 and T2 to positive values eliminates six possible

solutions leaving two locally identifiable parameter combinations. These arise from the

symmetry of the input function, i.e. the fact that the order of input components could

be switched for the same overall shape, which would be indicated by T1 > T2.

5.3.2.2 Input functions RaRLN and RaLN

For the OMM in combination with the input functions RaRLN and RaLN , both in-

cluding a log-normally shaped component, it is unfeasible to calculate the Taylor series

coefficients at t0 = 0 due to the log-normal function being defined as zero at this time

(see expression (5.2)). An expansion of the Taylor series around t0 = 1, however, leads,

in both input functions, to a system that is intractable with symbolic computation even

if the complexity of the system is reduced by assuming that certain parameters are

globally identifiable prior to the calculation. This demonstrates that the Taylor series

approach in combination with symbolic computation is no longer appropriate when a

log-normally shaped component is used in the input function. Other testing methods

for structural identifiability, such as the DAISY software tool [132], mentioned in section

4.4.3, or the Exact Arithmetic Rank approach [145, 146] implemented in a Mathematica

software package, are also not suitable for this type of function. In contrast, the ORC

method can be used for this type of function and shows that all parameters are locally

structurally identifiable for both input functions (see Appendix B.2.4 for the details).

Regarding the possible parameter combinations resulting from the local identifiabil-

ity, two conclusions can be drawn from the results concerning RaR previously presented.

Firstly, in the function RaRLN in Table 5.2, combining a Rayleigh and a log-normal com-

ponent, the parameter T1 is squared. It is therefore to be expected that there are two

possible solutions, T1 and −T1, which can be resolved by restricting the parameter T1

to positive values. Secondly, the function RaLN in Table 5.2, combining two log-normal

components, has the same symmetry as the function RaR, consisting of two Rayleigh

components. This means that there a two possible combinations as the two log-normal

input components of RaLN can be switched for the same overall shape, which would be

indicated by T1 > T2.
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5.3.3 Choice of prior distributions

Following the structural identifiability analysis, the developed input functions require

the definition of suitable prior PDFs over the peak time parameters T , width parameters

W and the relative contribution RH .

The peak time parameters T1 and T2 used in both the Rayleigh and log-normal

components are only plausible when positive. They are therefore transformed into log-

normally distributed parameters characterised by a median and CV as explained in

section 3.3.2.2. This additionally avoids the peak times converging to very small yet

positive values which would create a sharp spike in the respective component, making

it physiologically implausible. The log-normal form of the PDF helps to avoid this,

because it assigns far less probability to values close to zero in comparison to normal

distributions, therefore decreasing the likelihood of the input function components tak-

ing non-physiological shapes.

Similar to the peak time parameters, the width parameters W1 and W2 appear-

ing in the log-normal components are only plausible when positive and are chosen to

be log-normally distributed as well. This also avoids non-physiologically spiked com-

ponents by assigning a low probability to very small, but positive, values of W . As

explained in section 5.3.1, the parameter RH has to lie between zero and one to avoid

negative GA rates. For that, the transformation using a logistic mapping, as described

in section 3.3.2.2, is applied and the parameter PDF is characterised by median and CV.

To characterise the prior PDFs over the input function parameters, their medians

are chosen to approximate the shape of the prior distribution over the piecewise-linear

function RaPL. A plot of the prior function shapes for the STAND meal in comparison

to the prior for RaPL has already been provided in Figure 5.2. In terms of the prior

CVs, the prior uncertainty of the input parameters in the piecewise-linear input RaPL

was chosen to be characterised with a CV of 50 %, in the previous chapter. Performing

a stochastic sensitivity analysis as described in section 3.4 on the new input functions

with a prior CV of 50 % leads to significantly increased functional variability in compar-

ison to RaPL. It is therefore proposed to reduce the prior CV of the new input function

parameters to 30 %, leading to comparable functional variability, as demonstrated in

Figure 5.3. This figure also demonstrates one weakness of the piecewise-linear function

mentioned previously: the function provides no mechanism for the height of the break-
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point at 180 min to remain positive, as indicated by its lower quartile being negative.

As explained in section 4.4.2, this is because the height at 180 min is completely deter-

mined by the AUC and the remaining parameters. The chosen prior values for the new

input functions are summarised in Table 5.3. Similar to Chapter 4 the influence of the

individual parameters and their prior distributions on the model output is demonstrated

by varying the value of one parameter at a time, while the other parameters are kept

fixed at their prior medians. The results are given in Appendix D.2.

Figure 5.3: Results of the global sensitivity analysis to assess the prior variability of
the input functions using 1000 Monte-Carlo simulations for (a) RaR, (b) RaRLN and (c)
RaLN . The solid lines give the median and the shaded area indicates the interquartile
range of simulations, respectively.

Table 5.3: Utilised medians of the prior distributions over the input function param-
eters. All prior CVs were set to 30 %.

Function Parameter Distribution Unit Prior median

RaR T1 Log-normal min 30
T2 Log-normal min 100
RH Logistic - 0.75

RaRLN T1 Log-normal min 30
T2 Log-normal min 100
W1 Log-normal - 0.5
RH Logistic - 0.65

RaLN T1 Log-normal min 30
T2 Log-normal min 100
W1 Log-normal - 0.5
W2 Log-normal - 0.5
RH Logistic - 0.7
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5.3.4 Parameter estimation procedure

No changes to the parameter estimation procedure described in section 4.4.5 are neces-

sary. Furthermore, the incorporation of the overlapping effects between meals is accom-

plished using the procedure described previous chapter and depicted in Figure 4.3. This

means that the persisting appearance from the previous meal Rap(t) is calculated as

Rap(t) = Ra(t+240), where the function Ra(t) can be any of the three newly proposed

functions inferred from the previous meal. Rap(t) is thus fully inferred from the data

and does not require the fixing of an exponential decay parameter as for the piecewise-

linear function. The implementation details of the model and its priors within the VB

toolbox are provided in Appendix C.2.

5.3.5 Input function selection

To select the most suitable input function candidate, the proposed functions are com-

pared amongst each other. This is achieved by utilising multiple model selection criteria,

where the focus lies on how the individual functions compare against the results using

the piecewise linear function. Specifically, the RMSE, free energy and estimated insulin

sensitivity SI are compared. Once the most appropriate function has been chosen, its

performance is assessed in more detail.

5.4 Results and discussion

5.4.1 Practical identifiability analysis

The practical identifiability of the input function parameters is assessed by analysing

their posterior CVs, as explained in section 3.4. The results are provided in Figure 5.4

and show that the posterior CVs significantly decreased from the prior CV of 30 % in

the vast majority of cases for all parameters. These results demonstrate the practical

identifiability of the input function parameters in all proposed functions and confirm

the results of the structural identifiability analysis. Regarding the local identifiability

of the parameters, there are no cases in RaR or RaLN where the respective components

are switched as indicated by T1 < T2 in all responses.
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Figure 5.4: Results of the practical identifiability analysis showing boxplots of the
posterior parameter CVs. The horizontal dashed line gives the value of the prior CV
which was chosen to be 30 % for all parameters.

5.4.2 Input function comparison and selection

The results of the comparison among the different proposed input functions are given

in Figure 5.5.

Figure 5.5: Comparison of various metrics between RaPL and the three proposed
input functions RaR, RaRLN and RaLN . Plot (a) gives a boxplot of the RMSE where
the p-values were calculated using the Wilcoxon rank-sum test. Plot (b) shows the share
of the responses compared to the OMM using RaPL in which the models are considered
equal (black portion) or superior (blue, red and yellow portion), according to the free
energy. Plot (c) gives a boxplot of the estimated insulin sensitivities. Plot (d) gives the
Pearson correlation of the insulin sensitivities between the OMM using RaPL and the
three proposed functions.
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The differences in RMSE (Figure 5.5 (a)) demonstrate that only function RaLN

yields an equally good fit in comparison to the piecewise-linear function RaPL, with

RaR and RaRLN yielding significantly higher error values (p < 0.01). This provides

evidence that only RaLN provides similar flexibility compared to RaPL. The same

conclusion can be drawn from the results of the free energy comparison (Figure 5.5

(b)), where it is demonstrated that only RaLN is deemed as equal or superior to the

piecewise linear function RaPL in more than 50 % of responses. In contrast, the insulin

sensitivity estimation (Figure 5.5 (b)-(c)) does not demonstrate a clear superiority of

any of the proposed input functions, with all candidates displaying highly correlated

(r > 0.9) and statistically equal (p > 0.6) insulin sensitivity estimates. Based on the

analysis of RMSE and free energy, the function RaLN consisting of two log-normal com-

ponents is chosen as the most suitable alternative to the piecewise-linear function RaPL.

5.4.3 Parameter estimation results

Following the choice of input function RaLN , consisting of two log-normal components,

as the most suitable input function form, the estimation results are examined in more

detail and compared to the results from Chapter 4 where the piecewise linear function

RaPL was used.

5.4.3.1 Parameter estimates and correlation

The results of the parameter estimation procedure using RaLN in comparison to the

corresponding results using RaPL are provided in Figure 5.6. The medians of the sys-

tem parameters p1 and p2 in plot (a) are only weakly correlated with the corresponding

estimates using the piecewise linear function RaPL. Together with the respective results

of the posterior CVs in plot (b), this again implies practical identifiability issues in the

parameters p1 and p2, as already discussed in section 4.5.2.2. The differences in insulin

sensitivity estimates will be discussed separately in section 5.4.4.2.

The posterior medians of the input function parameters in Figure 5.6 (c) show no

significant differences between meal types (p > 0.05 according to the Kruskal-Wallis

test). Regarding the posterior CVs of the input function parameters in plot (d), it can

be noted that the width parameters W1 and W2 show a higher uncertainty than the

remaining parameters. This can be explained by the fact that these parameters have

the smallest influence on the model output, as shown in the Appendix Figure D.4.
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Figure 5.6: Posterior parameter estimates of the OMM using the log-normally based
input function RaLN . Displayed are the population boxplots of median and CV of the
posterior distributions. The shaded grey ares indicate the prior PDF. Plots (a)-(b)
compare the system parameters to the results using the piecewise linear input RaPL.
Differences were tested using the Wilcoxon ranksum test and the r-values give the Pear-
son correlation coefficient. Plots (c)-(d) give the input parameters of RaLN , grouped
according to the meal types of standard (STAND), high CHO (HCHO) and high protein
(HPROT) composition.

The correlations of the model parameters, assessed through the posterior covariance

matrix as described in section 3.3.2.2, are displayed in Figure 5.7 (a). Similar to the

OMM using RaPL in plot (b), the majority of correlations are small and thus non-

significant. The exception is input function parameter RH , which shows correlations to

the other input function parameters and p2. This can be explained by the fact that the
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parameter RH has a significant impact of the model output as shown in the Appendix

Figure D.4, which overlaps with the effects of other parameters. A reparameterisation

of the input function is, however, not plausible as it was already shown that simpler,

less flexible input functions are not suitable.

Figure 5.7: Median posterior parameter correlation matrix of the OMM using (a) the
log-normally based input function RaLN and (b) the piecewise linear function RaPL,
from the individually estimated parameter correlation matrices of all 99 responses.

5.4.3.2 Model fit

The residuals between model output and data weighted by the measurement uncertainty

were calculated using expression (4.11) and are displayed in Figure 5.8.

Figure 5.8: Comparison of the weighted residuals between the model output of the
OMM with RaPL and RaLN , respectively. The values and error bars represent the
mean and standard deviation of weighted residuals over all meal responses.

The overall mean and standard deviation of the absolute weighted residuals is 0.40

± 0.31 for RaLN compared to 0.49 ± 0.48 for RaPL. This difference is due to the
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improved model fit during the first 30 min of the response, as shown in Figure 5.8 and

demonstrates the superior flexibility of RaLN during this period in comparison to RaPL.

In contrast, RaLN yields slightly more biased residuals with larger variability towards

the end of the response. This can be explained by the higher flexibility of RaPL in

the last 90 min of the response. For the remaining part of the response, both input

functions produce a similar model fit. To further illustrate model fit epsecially during

the first 30 min of the response, an example of the model output for each meal type is

given in Figure 5.9.

Figure 5.9: Example comparing the model output of the OMM using the piecewise
linear input function RaPL and the log-normally based input function RaLN for the
three meal types of (a) standard (STAND), (b) high CHO (HCHO) and (c) high pro-
tein (HPROT) composition. The shaded area represents the uncertainty (standard
deviation) from a deterministic sensitivity analysis and the solid black line provides the
basal glucose level Gb.

5.4.4 Model validation

5.4.4.1 Comparison of glucose appearance profiles

The difference between glucose appearance profiles is assessed by

δRa(t) =
RaPL(t)−RaLN(t)

RaPL(t)
, (5.6)
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and the results of this comparison are displayed in Figure 5.10.

Figure 5.10: Top: Comparison between the inferred appearance profiles of RaPL and
RaLN for each meal type STAND (left), HCHO (centre), HPROT(right). Bottom:
Time course of the relative deviation between RaPL and RaLN for each meal type. The
solid lines and shaded areas give the median and associated interquartile range.

The comparison demonstrates several differences between the two functional forms.

Firstly, it is evident that the first peak in the GA profiles occurs slightly earlier in all

meal types when RaLN is used. This can be considered more realistic because, unlike

RaPL, the proposed function is more flexible over this part of the response and fits

the data better, as described in the previous section. This also explains the fairly high

values of δRa in the first 30 min. Another indication of a more realistic estimation of GA

using RaLN is found in a publication by Dalla Man et al (2004) [72]. Using traced glu-

cose to obtain a reference profile of GA, it was found that the piecewise-linear function

overestimates GA in the first 30 min. Since RaLN infers lower GA rates in compari-

son to RaPL, the function RaLN can thus be considered to provide more realistic results.

For the remaining response time, the inferred profiles in the meals of standard

(STAND) and high carbohydrate (HCHO) composition display a similar pattern and

low δRa values. This is not the case for the meal with high protein content (HPROT).

Here, the piecewise-linear function displays three distinct absorption phases, whereas

the new function is, by definition, only capable of producing two phases. Despite this

lack of flexibility of RaLN , a worse model fit in the HPROT meal cannot be detected,

as demonstrated by the statistical equivalence of the RMSE values, i.e. RaPL 0.23 ±
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0.1 vs. RaLN 0.24 ± 0.1 mmol/L, p = 0.59. This demonstrates that the choice of two

input function components provides a suitable balance between flexibility and model fit.

5.4.4.2 Comparison of insulin sensitivity estimates

The estimation of insulin sensitivity values is compared in Figure 5.11.

Figure 5.11: Correlation between estimated insulin sensitivity values for the OMM
using RaPL and RaLN . The black line and equation display the results of the linear
regression analysis and the dashed black line displays the line y=x.

The results demonstrate a very strong correlation between the SI values estimated

with RaPL and RaLN with very few outliers. Given the well-established nature of the

OMM using RaLN , the respective SI estimates can be considered to be true and thus

indicate a minor underestimation of the SI values when RaLN is used. Additionally, the

posterior precision of SI is slightly decreased as indicated by a higher CV, i.e. RaPL

6.9 ± 5.3 vs. RaLN 8.5 ± 7.6, p = 0.06. It can, therefore, be concluded that the quality

of insulin estimation is marginally decreased.

5.5 Summary and conclusions

In this chapter, an alternative formulation to the conventional piecewise-linear input for

the OMM was presented and validated. This was motivated by the fact that the piece-

wise linear function is unsuitable for the description of consecutive meal responses of

varying duration. The proposed function is composed of two superimposed, log-normally

shaped components, forming a differentiable and continuous function, completely inde-

pendent from the modelled response duration. This allows the practical description of

glucose dynamics if multiple consecutive meals are consumed. For that the procedure
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depicted in Figure 4.3 can be adapted for any number of meals with an arbitrary dura-

tion in between. In comparison to the piecewise-linear function, it has a reduced number

of parameters but shows an equivalent model fit and highly correlated insulin sensitivity

estimates with respect to the OMM using the piecewise-linear function. In the meals of

standard and high-carbohydrate composition, the inferred appearance profiles display

a very similar pattern in comparison to the piecewise-linear function.

These results provide sufficient evidence for utilising the new input function in the

glucose-only models which will be developed in the subsequent chapter.



Chapter 6

Minimal modelling of glucose

dynamics in NGT subjects using

glucose data only

6.1 Introduction

The aim of this chapter is to develop models for the description of postprandial glucose

dynamics using glucose data only, referred to as glucose-only models (GOM). This will

be achieved by proposing an alternative formulation of the oral minimal model (OMM)

that is independent of insulin data. Crucial for this endeavour is the assumption that

postprandial glucose dynamics are sufficiently similar to the corresponding insulin dy-

namics so that it is possible to extract adequate information by only considering glucose

dynamics. This chapter will, therefore, present a brief literature review on the relation-

ship between glucose and insulin concentrations and carry out a respective analysis on

the Nuttall dataset. Before that, a literature review containing detailed discussions of

existing glucose-only models as well as models of glucose-dependant insulin secretion

will be presented.

Both, existing modelling approaches and properties of the glucose-insulin relation-

ship will inform the subsequent GOM development. The GOMs will also utilise the

novel input function proposed in the previous chapter and will be identified from the

glucose measurements of the Nuttall dataset. The performance of the developed GOMs

will be validated against the results presented in Chapter 4 where the OMM was applied

97
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to the same dataset. The focus will hereby lie on the ability of the GOMs to fit the

data and provide information on insulin sensitivity and meal-related glucose appear-

ance. The goal of the glucose-only modelling task is thus to establish the physiological

interpretability of the model parameters by assessing their results in comparison to the

associated OMM results obtained from the same dataset. The OMM is thereby consid-

ered to be the validation standard.

6.2 Literature background

6.2.1 Minimal modelling using glucose data only

The following section will discuss the small number of published glucose-only models

for the description of postprandial glucose dynamics in NGT and non-insulin dependant

T2DM.

6.2.1.1 Ackerman’s models

The first glucose-only description of OGTT responses was introduced by Ackerman et

al. [21] in 1964 with the following model

d2g(t)

dt2
+ p1

dg(t)

dt
+ p2g(t) = D · δ(t) with g(0) = 0,

dg(0)

dt
= 0 (6.1)

where g(t) represents the glucose concentration above basal levels and parameters p1

and p2 govern the system dynamics. Note the use of lower case letters to form a

distinction to the previously used G(t) representing absolute concentrations. The input

D · δ(t) to the system approximates a quick rise and subsequent slow drop of the actual

of glucose appearance (GA) rate, but does not represent GA itself. In order to allow

a physiological interpretation of the model and see the similarities to other models of

glucose metabolism, expression 6.1 is rewritten as follows

dg(t)

dt
= −x(t) g(0) = 0, (6.2)

dx(t)

dt
= −p1x(t) + p2g(t)−D · δ(t) x(0) = 0, (6.3)

The introduced state x(t), defined as the negative derivative of the glucose concentra-

tion g(t), can now be interpreted as a general glucose-lowering effect. The state g(t)

couples linearly into the expression (6.2) for the glucose-lowering effect x(t), resulting in
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a glucose-dependent increase in x(t) via the parameter p2. This explains the fact that

Ackerman et al. found that the square root of this parameter to be the most different

between non-diabetic and T2DM subjects after model identification [21]. Overall, the

model (6.1) - (6.2) describes the glucose response to an OGTT as the impulse response

of a linear damped harmonic oscillator.

In comparison to the OMM, the impact of Ackerman’s model has been modest with

comparatively few further applications [22–25, 144, 147]. Khovanova et al. [24, 25] pro-

posed a nonlinear, stochastic extension to the model for the description of postprandial

glucose responses in NGT, T2DM and T1DM (without insulin information) subjects.

Furthermore, the author of this thesis used the model to propose a novel input function

in place of the Dirac impulse [144], as explained in the previous chapter.

Although derived from an earlier physiology-based model proposed by Bolie et al.

[10], Ackerman’s model and all its subsequent adaptations have no direct physiological

interpretation. This is rooted in the simplified description of the state g(t) in (6.1) as

well as the fact that the input function does not represent glucose appearance. This

makes it difficult to validate the model against physiology-based quantities such as in-

sulin sensitivity and GA and forms the main weakness of Ackerman’s model and its

adaptations.

6.2.1.2 Goel’s model

Another glucose-only model recently proposed by Goel et al. [27] is based on an earlier

model by Topp et al. [148] and takes the following form

dG(t)

dt
= p0 − p1G(t)− SIG(t)I(t) + F (t), (6.4)

dI(t)

dt
= −p2I(t) + Imax

G(t)2

a+G(t)2
, (6.5)

where G(t), p0, p1 and SI represent the glucose concentration, basal glucose produc-

tion rate, glucose effectiveness and insulin sensitivity, respectively. The function F (t)

represents GA and is described by a second-order model of digestion, resulting in a

GA profile similar to Horvorka’s function mentioned in Chapter 5 (see Table 5.1). The

state I(t) directly represents the insulin concentration with parameters p2 and Imax

describing insulin clearance rate and the maximal insulin production rate, respectively.
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The glucose-dependant insulin secretion, i.e. second term in (6.5), is described by a

Hill equation with parameter a and coefficient n = 2. An example of the relationship

between glucose levels and insulin secretion is given in Figure 6.1.

Goel’s model was identified from isolated “landmark” responses in CGM profiles from

only one healthy and one T2DM subject, where parameters p0, p2 and a were fixed.

This low number of subjects and the fact the modelled responses showed poor fit form

the main weakness of the model by Goel et al.

Figure 6.1: Description of glucose-dependent secretion of insulin in the models by
Goel et al. [27] and Chen et al. [26].

6.2.1.3 Chen’s model

The last glucose-only model to be discussed here was published by Chen et al. [26] and

is described by the following equations

dG(t)

dt
= −f1(G(t)) + f2(G(t), I(t− τ1))− SIf3(G(t), I(t)) + F (t), (6.6)

dI(t)

dt
= −p2I(t) + p3f4(G(t− τ2)). (6.7)

Functions f1, f2 and f3 describe glucose effectiveness, hepatic glucose production and

insulin-dependent glucose utilisation, respectively (see Appendix D.3.1 for details). The

function F (t) represents GA and is formulated with the Rayleigh PDF introduced in

Chapter 5 (see Table 5.1). Of interest is function f4, which takes a sigmoidal shape to

describe the delayed, glucose-dependent insulin secretion. An example of this function

is given in Figure 6.1. The main property of the model is the use of delay differential

equations as indicated by delay parameters τ1 and τ2, giving the model the ability to

produce and sustain oscillations in glucose and insulin concentrations.

In contrast to the previously discussed GOMs, Chen’s model is considerably more
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complex as indicated by the fact that functions f1 to f4 are determined by around 25

fixed parameters. The model has nevertheless been identified on CGM profiles from

healthy and T2DM subjects. The overall dynamics of the glucose profiles are only

roughly approximated and although the authors claim that the parameter values can

“identify the patients’ conditions of physiological functions”, no validation with respect

physiology-based measures was carried out.

To conclude this review on existing glucose-only modelling approaches, it can be stated

that none of the discussed models have been truly validated with respect to their ability

to provide information on the underlying physiology. In contrast, we will develop and

validate our models with respect to the well-established and physiology-based OMM,

thereby taking a new approach to the development of glucose-only models that ensures

physiological interpretability and adequate model fit.

6.2.2 Minimal modelling of insulin secretion

For the purpose of developing GOMs, it is useful to consider models describing the re-

lationship between glucose dynamics and insulin secretion. The main purpose of these

models is to quantify beta-cell function through the description of insulin secretion. This

is accomplished by modelling the dynamics of insulin concentrations, or more commonly

C-peptide concentrations, in response to glucose. C-peptide is a by-product of insulin

secretion and is released simultaneously in equimolar amounts by beta-cells. Unlike

insulin, C-peptide is not metabolised in the liver and can, therefore, provide a more

accurate picture of pre-hepatic insulin concentrations when sampled from a peripheral

vein [8].

Regarding the modelling approach in this thesis, only whole-body level models of in-

sulin secretion and dynamics in response to ingested glucose are relevant. This excludes,

(1) studies using deconvolution [149, 150] because they do not explicitly describe the

effect of glucose concentrations on insulin secretion, (2) models developed for IVGTT

responses, and (3) models including detailed descriptions of beta-cell physiology (see

reviews [9, 13] for more details on approaches (2) and (3)).

This leaves three approaches by Hovorka and Ruan et al. [151, 152], Ferrannini et

al. [153–156] and Breda et al. [157] to be discussed as they fit the mentioned inclusion

criteria. These approaches propose a description of the insulin secretion rate SR(t) with
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glucose levels as known input. Except for the model by Ruan et al. [152], all approaches

discussed below utilise a linear two-compartment model of C-peptide kinetics (Figure

6.2 (a)), whose output is modelled against measured C-peptide levels. This provides a

time course of the insulin secretion rate and a dose-response curve relating glucose level

to insulin secretion rate (Figure 6.2 (b)).

Figure 6.2: (a) Two compartment model of C-peptide kinetics in plasma (CP1) and
periphery (CP2) with the secretion rate SR(t) acting as input to the measured com-
partment CP1 [8]. The parameters k01, k12 and k21 are determined from the subject
characteristics [158]. (b) Example of a dose-response curve. The secretion rate is nor-
malised according to body surface area [155].

6.2.2.1 Hovorka’s models

In 1998, Hovorka et al. [151] proposed the following model of insulin secretion featuring

a linear relationship between glucose concentration G(t) and insulin secretion rate SR(t)

SR(t) =


p1[G(t)−Gb] + p0Gb if p1[G(t)−Gb] + p0Gb > 0

0 otherwise
. (6.8)

The parameters p0 and p1 are the basal and postprandial sensitivity indices, respectively

and Gb is the basal level of glucose concentration. The linear relationship was justi-

fied by an earlier study which used deconvolution to determine the dose-response curve

during gradual infusion of exogenous glucose [159]. An adaptation of Hovorka’s original

model was later used by Ruan and Hovorka et al. [152] to directly describe measured

post-hepatic insulin concentrations in T2DM subjects. This approach assumed that

insulin concentrations are directly proportional to the rate of post-hepatic insulin secre-

tion due to the short half-life of plasma insulin, making the C-peptide kinetics model

obsolete. The new model [152] also added a piecewise-linear, glucose-independent se-
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cretion term to amplify postprandial insulin secretion, as well as a dynamic secretion

term dependent on the rate of glucose change.

6.2.2.2 Ferrannini’s models

In the early 2000s, four similar studies by Ferrannini et al. [153–156] were published.

Here, the insulin secretion rate was modelled with slightly different formulations in each

publication. However, all chosen relationships have at least one parameter governing

the basal secretion, one parameter governing the general slope (responsiveness) and

one or more parameters governing the shape ranging from quasi-linear to more convex

dose-response curves. An example of such a relationship is given in Figure 6.2 (b) and

demonstrates a flat but non-zero curve in the hypoglycaemic range below 4 mmol/L

representing basal secretion and an approximately linear relationship between glucose

levels and insulin secretion above that. Similar to the work by Ruan and Hovorka et al.

[152], a dynamic secretion dependent on the rate of glucose change was added. Further-

more, the secretion model included an additional glucose independent, piecewise linear

secretion term varying throughout the day.

Ferrannini’s studies [153–156] generally found linear dose-response curves in the 5-8

mmol/L range with more flattened shapes below 5 mmol/L (Figure 6.2 (b)). Further-

more, studies [155, 156] found more flattened dose response-curves in obese and T2DM

subjects in comparison to NGT subjects.

6.2.2.3 Breda’s model

The third and final study to be discussed in this section was published by Breda et

al. [157] proposing the oral C-peptide minimal model, which is considered to be the

counterpart of the OMM for describing insulin dynamics using glucose profiles as a

known input [74]. An important distinction to Hovorka’s and Ferrannini’s models is that

Breda’s model only considers C-peptide concentrations above basal levels, omitting the

need for a basal secretion component. Furthermore, the secretion rate SR(t) is modelled

with a first-order ODE, given by

dSR(t)

dt
=

1

T
[p1(G(t)−Gb)− SR(t)] SR(t) = 0. (6.9)
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Equation (6.9) effectively delays the secretion rate according to the parameter T with

respect to the glucose level G(t) above a threshold Gb. The parameter p1 acts as a

linear proportionality factor, relating G(t) above Gb to SR(t). As in all other discussed

approaches, the description of secretion is augmented by a dynamic term dependant on

the rate of glucose change. A very similar model was proposed by Cretti et al. [160]

in the same year. Due to its connection with the OMM, Breda’s model had the largest

impact out of the three introduced approaches, as indicated by its use in a number of

highly influential publications [47, 75–78] to quantify beta-cell function.

To conclude this review on insulin-secretion models, it can be stated that all approaches

provide different formulations of the relationship between glucose levels and insulin

secretion that have been shown be physiologically plausible. They can thus be used to

inform the formulation of glucose-only models.

6.3 Analysis of glucose-insulin relationship

The success of the modelling task in this chapter is partially dependant on the extent

to which the dynamics of insulin concentrations can be recovered by only considering

the dynamics of glucose levels. A literature search found that only a limited number

of studies have been published on this topic. In both publications discussing the Nut-

tall dataset [29, 128] it was noted that insulin curves paralleled glucose curves in the

STAND and HCHO diets, without carrying out a more systematic evaluation. A later

study by Robbins et al. [161] took a more systemic approach to a similar dataset and

found that around 80 % of glucose peaks coincided with peaks in insulin levels. This was

confirmed by other studies [162, 163], where a short sampling period of 4 min allowed

the identification of correlated periodic oscillations in postprandial glucose and insulin

levels [162]. In order to establish the existence of this similarity in the Nuttall dataset,

a systematic evaluation of the glucose-insulin relationship is carried out in the following

section.

6.3.1 Correlation analysis

In the OMM, both glucose and insulin concentrations are considered with respect to

their (fixed) baseline concentrations Gb and Ib, respectively. As explained in Chapter 4,
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the baseline values are calculated for every subject individually by averaging the sam-

ples at -15, 0, 2 and 5 min. It is therefore of interest to assess the correlation between

the glucose and insulin concentrations above their respective baseline values, the results

of which are presented in Figure 6.3.

Figure 6.3: Scatter plots of glucose and insulin concentrations above their baseline val-
ues Gb and Ib, respectively for the meal types (a) STAND, (b) HCHO and (c) HPROT.
The Spearman correlation coefficients are given in top right hand corner of the plots.
All correlations are statistically significant with p < 10−12.

In comparison to the STAND and HCHO meal types, the HPROT meal type shows

a lower but significant correlation between glucose and insulin concentrations above

baseline. Of note is that it is far less common for insulin concentrations to fall below

baseline in comparison to glucose concentrations, which is especially significant in the

HPROT meal. This is an important observation for the subsequent modelling process

as it gives crucial information on the relationship between glucose levels and insulin

secretion when glucose levels fall below their respective basal values.

6.3.2 Cross-correlation analysis

To assess the temporal relationship between glucose and insulin levels, a cross-correlation

analysis is performed. This is carried out on every daily meal response (breakfast,

lunch, dinner) separately and subsequently summarised across all responses from the

same meal type (STAND, HCHO and HPROT). Due to the large differences in abso-

lute concentrations, glucose and insulin levels above baseline are normalised according

to their respective peak value. The resulting correlations are additionally normalised

so that the correlation equals one at lag zero. To provide a reference for comparison,

the self-similarity of the insulin profiles is assessed using auto-correlation. Should the
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cross-correlation profile between glucose and insulin, and the auto-correlation profile of

only insulin be similar to each other, it can be assumed that the glucose and insulin

levels also have very similar dynamical properties. The comparison of the correlation

profiles is depicted in Figure 6.4.

Figure 6.4: Cross-correlation between normalised glucose and insulin levels (blue) and
auto-correlation of the insulin levels (red) as reference. The solid lines and shaded areas
give the median and interquartile ranges for all meal responses in the (a) STAND, (b)
HCHO and (c) HPROT meal types, respectively. The values above the plots give the
median and interquartile range of the time lag at the maximum cross-correlation in min.

Comparing cross- and auto-correlation profiles for all meal types, the HCHO meal

type shows the greatest similarity with almost identical profiles, followed by the STAND

meals and the HPROT meals showing the least amount of similarity. In all meal types,

the profiles are most dissimilar between time lags of 0 and 120 min. The time lags

at maximum cross-correlation given in the plot headings display a clear bias towards

negative values which could imply that the insulin levels lag behind glucose levels.

To conclude this analysis it can be stated that glucose and insulin dynamics show

sufficient similarity to fulfil the prerequisite of the modelling task in this chapter.

6.4 Modelling

6.4.1 General model formulation

As noted in the introduction to this chapter, the GOMs proposed here are based on the

OMM, where the measured insulin concentrations enter the model as a known input. To

make the GOMs independent from this input, i.e. insulin measurements, the following
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generalised formulation is proposed

dG(t)

dt
= −G(t)X(t)− p1 [G(t)−Gb] +

RaLN (t) +Rap(t)

V
, G(0) = G0, (6.10)

dX(t)

dt
= −p2 [X(t)− SGZ(t, Gb)] , X(0) = X0, (6.11)

RaLN (t) = A(1−RH)
1
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 ,

(6.12)

The interpretation of the variables in expression (6.10) remains unchanged in com-

parison to the OMM and the glucose appearance is described by the function RaLN

consisting of two superimposed log-normal components, selected in Chapter 5. The

persisting GA Rap(t) is known and calculated by extending the inferred GA from the

previous meal, if present, beyond the response duration as depicted in Figure 4.3 and

described in the previous chapters.

The main change concerning the OMM is the introduction of the function Z in ex-

pression (6.11) in place of the measured insulin concentration above baseline. The state

X(t) thus no longer represents the active insulin effect, but instead describes a general

glucose-lowering effect of identical units min-1, with the parameter p2 governing its de-

cay dynamics. The introduction of the function Z also means that the parameter SG

replaces the insulin sensitivity parameter SI in the OMM, as SG no longer complies

with the mathematical definition of insulin sensitivity given by expression (2.1). It is,

however, expected that a successful formulation of Z yields a strong correlation between

the new parameter SG and insulin sensitivity SI inferred by the OMM.

6.4.1.1 Formulation of Z

The function Z couples the current glucose concentration into the description of the

state X(t) and replaces the insulin concentrations above baseline in the OMM. In the

work by Ruan et al. [152] described in subsection 6.2.2.1, it was assumed that the

insulin concentrations are directly proportional to the rate of post-hepatic insulin se-
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cretion due to the short half-life of plasma insulin. In this work, the same assumption

is made, meaning that Z can be considered similar to the glucose-dependant insulin

secretion rate SR(t), for which several modelling approaches were discussed earlier. It

should, however, be emphasised that Z only describes a general glucose-lowering effect

similar to the state X(t) and a direct connection between Z and actual insulin concen-

trations cannot be claimed. For the model to be stable and have its steady-state glucose

concentration at Gb, the function Z has to be zero at basal glucose level Gb, which is

equivalent to the insulin concentration reaching the baseline level Ib in the OMM. The

following sections will propose a total of three different formulations for the function Z.

Firstly, similar to Ferrannini’s models [153–156], the following relationship is pro-

posed

ZLOG(G(t), Gb) = log

[
exp(G(t)−Gb) + β

β + 1

]
. (6.13)

The shape of the function ZLOG is similar to the dose-response curve shown earlier in

Figure 6.2. However, it is designed to be zero at G(t) = Gb. The function is approx-

imately linear in G for G(t) > Gb and flattened at values G(t) < Gb as depicted in

Figure 6.5. Here, the influence of the parameter β on the shape of the function is also

demonstrated.

Figure 6.5: Example plots of the functions (a) ZLOG and ZLIN and (b) ZPOS for
varying values of the shape parameters. For the function ZLOG in (a), it is demonstrated
that the function becomes ZLIN for the case of β = 0. Overlayed in both plots are the
scaled data from all meal types already depicted in Figure 6.3.
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The function ZLOG is designed so that if β = 0, it simplifies to

ZLIN (G(t), Gb) = G(t)−Gb, (6.14)

which forms the second proposed formulation of Z. This linear relationship between

glucose and insulin secretion is also used in the models proposed by Hovorka et al. [151,

152] described in section 6.2.2.1. We also proposed model (6.10) - (6.11) in combination

with expression (6.14) for the function Z, in a conference publication as a glucose-only

alternative to the OMM [164].

In the correlation analysis carried out in section 6.3, it was demonstrated that it is far

less common for insulin concentrations to fall below baseline in comparison to glucose

concentrations. While this effect is already approximated with the function ZLOG for

β > 0, the function settles on a negative value for values of G(t) < Gb. This behaviour,

however, cannot be observed in the data as demonstrated in Figure 6.5 (a), where the

data are overlayed with the function ZLOG. To better approximate the behaviour of the

data for G(t) < Gb, the following novel function is proposed as the third alternative

ZPOS(G(t), Gb) =
G(t)−Gb

1 + exp [−γ(G(t)−Gb)]
. (6.15)

The function ZPOS is designed to be linear in G for G(t) > Gb and to be 0 at G(t) = Gb.

For G(t) < Gb the function ZPOS converges to zero with its shape depending on the

parameter γ, as depicted in Figure 6.5 (b).

Initially, it was also considered to formulate Z with a first-order differential equation

similar to Breda’s model (6.9) to introduce a delay between glucose levels and Z. This,

however, gives the model the ability to exhibit significant self-oscillatory behaviour

which is physiologically implausible and was thus not considered further in the modelling

process. The result of the model formulation in this chapter are three descriptions of Z

summarised in Table 6.1. These formulations were partially based on existing ideas for

the modelling of glucose-dependent insulin secretion and the relationship between the

glucose and insulin levels in the Nuttall dataset examined in section 6.3.
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Table 6.1: Summary of the formulations for the function Z proposed in this chapter.

Number Formulation of Z(G(t), Gb) Parameters

(1) ZLIN = G(t)−Gb Gb

(2) ZLOG = log

[
exp(G(t)−Gb) + β

β + 1

]
Gb, β

(3) ZPOS =
G(t)−Gb

1 + exp[−γ(G(t)−Gb)]
Gb, γ

6.4.2 Identifiability analysis

6.4.2.1 Sensitivity analysis

Before the structural identifiability analysis was performed, a sensitivity analysis of

shape parameters β and γ appearing in the functions ZLOG (2) and ZPOS (3), respec-

tively, was carried out. The purpose of this sensitivity analysis was to examine the effect

of the parameters β and γ on the model output. The results of this analysis are depicted

in Figure 6.6 and imply that β and γ are practically non-identifiable. This is indicated

by the fact that, compared to other parameters, they have only a minor influence on

the overall shape of the model output, even when sampled from a wide prior PDF with

a CV of 200 %. The parameters β and γ are thus fixed and not considered as unknown.

Figure 6.6: Results of the global sensitivity analysis of parameters (a) β and (b) γ for
the model using (a) ZLOG and (b) ZPOS , respectively. The solid lines and shaded areas
show the median and interquartile ranges of the model output over 1000 Monte-Carlo
simulations, where all parameters except β and γ were fixed, and the PDFs for both
parameters were chosen to be log-normal with medians of one and two for β and γ,
respectively and a CV of 200 %.

The chosen values for β and γ are one and two, respectively. This was based on the
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results in Figure 6.5, where it is demonstrated that the resulting shapes of functions

ZLOG ((a), yellow) and ZPOS ((b), yellow), approximate the relationship between glu-

cose and insulin in the Nuttall dataset suitably.

6.4.2.2 Structural identifiability analysis

Based on the results form the previous section, the following parameters are considered

for estimation: the system parameters p1, p2 and SG as well as the parameters related

to the input function T1, T2, W1, W2 and RH . Identical to the previous chapters, it is

assumed that both initial conditions G0 and X0, as well as Gb, A and V in the model

(6.10) - (6.12), are known.

In the previous chapter, it was already mentioned that the Taylor series approach

fails in models using the log-normally based input function RaLN . The ORC method is

therefore used, where it can be shown that all unknown parameters in all three proposed

model formulations using ZLIN , ZLOG and ZPOS are structurally locally identifiable (see

Appendix B.3.1 for the details). As the symmetric input function RaLN is used, the

same locally identifiable parameter combinations, mentioned in section 5.3.2.2 exist.

These arise from the fact that the two log-normal input components of RaLN can be

switched for the same overall shape, which would be indicated by T1 > T2.

To give additional evidence for the structural identifiability results of the ORC

method, the model (6.10) - (6.11) in combination with ZLIN (1) and the following

simplifications is analysed with the Taylor series method

RaLN (t) = k · t, Rap(t) = R0 exp(−tα). (6.16)

This assumes a simplified input function with a single unknown parameter k and a

known persisting absorption Rap(t), formulated by an exponential decay defined by the

known parameters R0 and α. Here, the Taylor series approach in combination with

symbolic computation shows that all parameters, i.e. p1, p2, SG and k are structurally

globally identifiable. This could indicate that these parameters are also structurally

globally identifiable when the more complex input function RaLN is used. When the

simplifications (6.16) are applied to the GOMs in combination with ZLOG (2) and ZPOS

(3), the symbolic computation no longer completes unless the parameter k is considered

to be known. In this case, the remaining parameters, i.e. p1, p2 and SG are structurally
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globally identifiable (see Appendix B.3.2 for the details of the symbolic computation).

Although the structural global identifiability of all parameters in all model candidates

cannot be definitively shown, these results provide sufficient evidence to support the

numerical identification of the models and do not warrant a reparameterisation. As

before, the structural identifiability results are validated with a practical identifiability

analysis after parameter estimation.

6.4.3 Choice of prior distributions

The identifiability analysis concluded with the following parameters to be estimated:

the system parameters p1, p2, SG and the parameters related to the input function T1,

T2, W1, W2 and RH . In comparison to the OMM, parameters p1, p2, T1, T2, W1, W2

and RH have the same interpretation and are thus defined by the respective prior dis-

tributions used in the OMM (Table 6.2). This leaves parameter the SG, requiring the

definition of suitable prior distributions. SG is restrained to positive values as it would

cause unstable model behaviour otherwise, so it is transformed into a log-normally dis-

tributed parameter as explained in section 3.3.2.2. To define the prior distribution

of SG, a stochastic sensitivity analysis comparing the model output for different prior

PDFs to the glucose responses is carried out, as explained in section 3.4. The result is

that a prior median of 0.05 min-1 per mmol/L and a CV of 50 % is chosen for SG. The

respective model output for all formulations of Z (1)-(3) in comparison to the data is

provided in Figure 6.7, where it is demonstrated that the model output approximates

the median and variability of the observed data in the case of the STAND meal. Similar

results are obtained for the other meals types.

Figure 6.7: Comparison of the data and the median and interquartile range of 1000
Monte-Carlo simulations of the model output of GOMs with (a) ZLIN , (b) ZLN and (c)
ZPOS using the prior distributions for the STAND meal.
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The details of all the prior distributions and constants used for the model identifi-

cation are summarised in Table 6.2. Similar to the OMM in the previous chapters the

influence of the individual parameters and their prior distributions on the output of

the GOM candidates is demonstrated by varying the value of one parameter at a time,

while the other parameters are kept fixed at their prior medians. The results are given

in Appendix D.4.

Table 6.2: Details of the prior distributions and fixed values used for the parameter
estimation of the glucose-only models.

Parameter Unit Prior
median ± CV %

Description

p1 min-1 0.025 ± 25 Glucose effectiveness

p2 min-1 0.012 ± 40 Rate constant governing the decay
of X(t)

SG
min-1 per
mmol/L

0.05 ± 50 Coupling parameter between
Z and X(t)

T1, T2 min [30, 100] ± 30 Peak times of first and second input
function components, respectively

W1, W2 - 0.5 ± 30 Width of first and second input
function components, respectively

RH - 0.7 ± 30 Controls the relative contributions of
the two input function components

β - 1 (fixed) Shape parameter of ZLOG (2)

γ - 2 (fixed) Shape parameter of ZPOS (3)

V L/kg 0.145 (fixed) [72] Glucose distribution volume

λ mmol/L 0.11 ± 10 (fixed) Standard deviation of measure-
ment error

f - 0.9 (fixed) [72] Fraction of ingested glucose that
is absorbed

D mmol/kg (fixed) Amount of CHO per kg of body
weight (see Table 4.1)
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6.4.4 Parameter estimation procedure

The parameter estimation procedure is identical to the previous models discussed in

Chapters 4 and 5 and uses the VB approach. To incorporate the overlapping effects

between meals, the procedure already used for the OMM and depicted in Figure 4.3 is

used. This allows the practical description of glucose dynamics if multiple consecutive

meals are consumed and would require only minor modifications for any number of

meals with an arbitrary duration in between. The details of the model implementation

within the VB toolbox are provided in Appendix C.3.

After all three model candidates are identified on every response, the individual

results are combined using the Bayesian model averaging (BMA) technique introduced

in section 3.5.2. Here, it should be emphasised that this combination is done for each

response individually and does not involve results from other responses of the same

individual or the population as a whole. This results in a fourth set of results, referred

to as the BMA results, for each individual response, additional to the three sets of

results of the model with ZLIN , ZLOG and ZPOS . The BMA results contain posterior

distributions over the unknown parameters as well as the trajectories of the states for

each individual response. The application of this technique is possible as the three

model candidates are sufficiently similar, i.e. the models are of the same order and have

the same number and interpretation of the unknown parameters.

6.4.5 Model comparison and validation

The performance of the three models as well as the combined results using BMA are

compared according to four criteria. These criteria consist of the more generic model

selection criteria RMSE and free energy as well as criteria specific to the purpose of

the developed GOMs, i.e. the extraction of insulin sensitivity and glucose appearance.

For three out of the four criteria a reference value for the comparison of the model

performance against an independent result is also provided. In detail, the four criteria

are as follows

• Model fit, as assessed through the RMSE values. The reference results are pro-

vided by the RMSE values of the OMM in Chapter 4 using the piecewise-linear

input.

• Free energy, i.e. the model’s ability to provide a balance between model fit and
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complexity. For that, the following procedure is applied. For each inferred re-

sponse, a model is considered a “winner” if it has the largest free energy, or the

difference of its free energy to the model with the largest free energy is less than 3,

i.e. it is considered equal to the model with the largest free energy, as explained in

section 3.5. This means that more than one model can be considered a “winner”

for each response. To then compare the models with respect to each other, the

number of times each model is considered a winner is calculated as a share of the

total number of responses across the entire dataset. This criterion can only be

applied for the three proposed models and not the BMA results as it does not

provide a free energy value. Furthermore, no reference result can be obtained for

this criterion.

• Correlation between the parameter SG and the insulin sensitivity SI inferred from

the OMM in Chapter 4 using the piecewise-linear input. A higher correlation

between SG and SI means a more accurate and reliable estimation of insulin

sensitivity using the respective GOM. To minimise the influence of outliers, the

Spearman rank correlation coefficient is utilised. As a reference result, the previ-

ously calculated correlation coefficients between the glucose and insulin data are

used (see Figure 6.3).

• Similarity between the glucose appearance profile RaLN estimated with the GOM

and the piecewise-linear glucose appearance profile RaPL inferred with the OMM.

To quantify this similarity, we assign to every meal response a single value calcu-

lated as the median of the absolute relative difference between the two inferred

appearance profiles, as follows

mδRa = Median
∣∣∣∣RaPL(t)−RaLN (t)

RaPL(t)

∣∣∣∣ . (6.17)

A model with a lower value of mδRa means that the appearance profiles are more

similar to the OMM estimated profiles and thus more accurate. The reference

values are provided by themδRa values between the log-normal appearance profiles

from Chapter 5 and the piecewise-linear glucose appearance profile RaPL from

Chapter 4 both inferred by the OMM.

The purpose of the model comparison procedure is to assess whether any of the

proposed models clearly outperforms the other models across all four criteria. If no



Chapter 6. Minimal modelling of glucose dynamics using glucose data only 116

single most suitable model can be determined, it will be assessed to what extent the

combined results from the BMA method are comparable to the results of the individual

models and whether it is preferable to use the BMA results instead of choosing a single

model candidate. To validate the selected results coming from either a single model or

BMA, their model fit and ability to extract insulin sensitivity and glucose appearance

information with respect to the OMM is examined and judged in more detail.

6.5 Results and discussion

6.5.1 Practical identifiability analysis

The results of the practical identifiability analysis, i.e. posterior CVs of all estimated

parameters, are displayed in Figure 6.8.

Figure 6.8: Results of the practical identifiability analysis using posterior parameter
CVs. The parameters are separated into (a) parameters characterising the system and
(b) parameters characterising the input function RaLN . The results are given as box-
plots and individual values with the horizontal dashed lines indicating the prior CV. In
(a), the boxplots with the black line represent the posterior CVs of the OMM using the
piecewise-linear function RaPL for p1, p2 and SI (in the SG column) from Chapter 4.
In (b), the boxplots with the black line represent the posterior CVs of the OMM using
the new input function RaLN from Chapter 5.
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It is evident that the posterior CVs for the parameter p1 only marginally decreased

from the prior in all of the GOMs considered (see Figure 6.8 (a)) meaning that this

parameter cannot be estimated beyond a certain level of precision, similar to the OMM.

The parameter p2 displays minor differences among the considered GOMs with some

models yielding a higher posterior precision in comparison to the OMM (black dot). Re-

garding the new parameter SG, the results demonstrate the highest posterior precisions

of all system parameters and adequate convergence to considerably lower CVs in com-

parison to the prior. Noteworthy is that the posterior CV of the BMA results (green)

is slightly increased during the BMA process. This is a result of the fact that median

values of SG in ZLOG (2) are mildly increased in comparison to ZLIN (1) and ZPOS (3),

translating into a higher uncertainty in SG during BMA (see expression (3.51)). Over-

all, the precision of SG is lower in comparison to the SI in the OMM (black), which is

most likely the result of omitting the insulin data to describe the state X(t).

The input function parameters in Figure 6.8 (b) show very similar results across

all proposed GOMs and the BMA results. In comparison to the OMM using RaLN

(boxplots with black lines), the median values are similar in all parameters but show

increased confidence intervals in parameters T2, W2 and RH , indicating the existence

of outliers. This means that the estimation accuracy of the parameters of the second,

log-normal input function component is impaired in several cases appearing predomi-

nantly in the high-protein meal (HPROT). The results nevertheless demonstrate that

all input parameters are practically identifiable, which confirms the theoretical results

from the structural identifiability analysis.

6.5.2 Model comparison and selection

The results of the model comparison analysis concerning the four model comparison

criteria are displayed in Figure 6.9. In terms of the RMSE in Figure 6.9 (a), all three

models provide a similar model fit, with only ZPOS (yellow) leading to an improved

model fit in the meal of standard composition (STAND) and ZLIN (blue) showing a

larger variability in the HPROT meal. Regarding the free energy in Figure 6.9 (b),

ZPOS (yellow) shows the highest winning share across all meal types. Nevertheless,

the other model candidates also show winning shares above 50 %, meaning that the

other candidates cannot be considered to be clearly inferior according to the free en-

ergy. Regarding the correlation analysis in Figure 6.9 (c), the estimated median values
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for SG for all model candidates show very similar and significant (p < 0.05) correlations

to the insulin sensitivity as estimated by the OMM. As implied by the results of the

correlation analysis between glucose and insulin data (shown in black), the correlations

are different across meal types with the high CHO meal (HCHO) showing the largest

and the high protein meal (HPROT) showing the lowest correlation. In terms of the

similarity between the estimated glucose appearance profiles of the GOM candidates

and the OMM shown in Figure 6.9 (d), all candidates show significantly (p < 0.05)

higher mδRa values than the reference provided through the comparison of the new

input function to the conventional piecewise-linear function in the OMM. Amongst the

model candidates, the mδRa values are similar.

Figure 6.9: Results of the model comparison, concerning the meal types and the
four model selection criteria of (a) RMSE, (b) free energy, (c) correlation and (d) the
similarity of estimate glucose appearance profiles. In (a) and (d), the distributions are
given as boxplots and individual values. The black data indicates the reference results
for the respective model fit criteria described in section 6.4.5.
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From this comparison, it can be concluded that none of the three proposed models

stands out as clearly superior for all of the criteria and all meal types, making it very

difficult to select a single model as the most suitable model candidate. This highlights

the benefits of using the BMA technique as it allows the combination of estimates from

the three model candidates for every response in an objective manner using the free

energy criterion. Examining the results of the BMA technique (green) in Figure 6.9

across all criteria, it can be concluded that the BMA method provides results that are

very similar to the three proposed candidates. Given this similarity and the difficulties

in selecting a single most suitable model candidate, we choose to use the combined BMA

results of all the model candidates as the result of the GOM modelling approach.

6.5.3 Parameter estimation results

Based on the choice of using the BMA results, its posterior parameter estimates and

ability to fit the data will be examined. They will hereby be referred to as GOM results

and include posterior parameter distributions and correlation matrices as well as the

model states and corresponding output.

6.5.3.1 Parameter estimates and correlation

The posterior results of the GOM are grouped according to meal type and displayed in

Figure 6.10. The system parameters p1 and p2 are similar in all meal types and follow

their prior distributions. The differences in the posterior medians of SG with respect to

meal type will be discussed in more detail in section 6.5.4.1. With regards to the pos-

terior CVs already discussed in the context of practical identifiability in section 6.5.1,

it can be noted that there is a decrease in the posterior precision in the parameters p2

and especially SG in the meal of high protein composition (yellow boxplot), which could

be explained by the generally decreased glucose excursions in this meal type, making it

more difficult to estimate the dynamic parameters.

The posterior medians of the input function parameters in Figure 6.10 (c) show no

significant differences between meal types (p > 0.05 according to the Kruskal-Wallis

test). This result is identical to the OMM using the input function RaPL displayed in

Figure 5.6 in the previous chapter. The same can be said regarding the posterior CVs,

where the width parametersW1 andW2 show increased values due their minor influence

on the model output, as shown in the Appendix Figures D.5 - D.7. Furthermore, the
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HPROT meal type generally leads to higher posterior uncertainties which is also similar

to the OMM results in Figure 5.6 (d).

Figure 6.10: Posterior parameter estimates of the GOM. Displayed are the popula-
tion boxplots of median and CV of the log-normal posterior distributions of (a)-(b)
system parameters and (c)-(d) input parameters, grouped according to the meal types
of standard (STAND), high CHO (HCHO) and high protein (HPROT) composition.
The shaded grey areas indicate the respective prior distributions.

The correlation of the model parameters in the GOMs, assessed through the poste-

rior covariance matrix as described in section 3.3.2.2, is displayed in Figure 6.11 (a).

The majority of the correlations are small and thus non-significant. Similar to the cor-

responding results of the OMM using RaPL in Figure 6.11 (b), the GOM results also

show correlations between RH and other input function parameters as well as p2. This

can again be explained by the fact that the parameter RH has a significant impact on
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the model output as shown in the Appendix Figure D.4, which overlaps with the effect

of other parameters. With respect to the system parameters, there is a minor negative

correlation between SG and p2, which cannot be seen in the corresponding parameters

of the OMM. A reparameterisation of the model is nevertheless not plausible.

Figure 6.11: Median posterior parameter correlation matrix of (a) the GOM and (b)
the OMM using the log-normally based input function RaLN , from the individually
estimated parameter correlation matrices of all 99 responses.

6.5.3.2 Model fit

To provide a more detailed assessment of model fit in comparison to the OMM, the

associated profile of weighted residuals is displayed in Figure 6.12.

Figure 6.12: Comparison of the weighted residuals between the model output of the
OMM and the GOM using ZPOS , respectively. The values and error bars represent the
mean and standard deviation of the weighted residuals over all meal responses.

The overall mean and standard deviation of the absolute weighted residuals is 0.33

± 0.24 for the GOMs compared to 0.49 ± 0.48 for the OMM using the piecewise-linear

input. This difference is due to the improved model fit during the first 30 min of the
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response. Overall, the results demonstrate that GOMs fulfil the formulated require-

ments of equal or improved ability to describe the glucose data. To further illustrate

the model fit, an example of the model output for each meal type is given in Figure 6.13.

Figure 6.13: Comparison of the model output of the OMM using the piecewise linear
input function RaPL and the GOMs for the three meal types of (a) standard (STAND),
(b) high CHO (HCHO) and (c) high protein (HPROT) composition. The shaded area
represents the uncertainty (standard deviation) from a deterministic sensitivity analysis
and solid black line provides the basal glucose level Gb.

An example of all model states and GA on an individual level is provided in Figure

6.14. In plot (a), it is demonstrated that both OMM and GOMs describe the glucose

data well and predict similar glucose profiles with very low uncertainty, as indicated by

the small standard deviation. Minor differences occur during the breakfast response,

which stem from the fact that the two models use different input functions. Figure 6.14

(b) exemplifies the differences between the inferred state X(t) in both models. These

differences are due to the fact that, in the OMM, the state X(t) is heavily influenced by

the measured insulin profiles as they enter this state as a known input. This information

is withheld from the GOM and the inferred state X(t) is instead coupled with the state

G(t). The fact that the moderately different profiles of X(t) lead to very similar profiles

of G(t), exemplifies how the description of glucose appearance and the estimation of
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the parameter p1 can compensate for these differences.

Figure 6.14: Comparison between the OMM (using RaPL) and the GOM (using RaLN
and BMA) in terms of (a) glucose data against predicted glucose measurements, (b)
inferred state X(t) and (c) inferred glucose appearance profiles, on a subject consuming
a meal of standard composition. All results are plotted as mean and standard deviation
resulting from the deterministic model sensitivity analysis described in section 3.4.

Figure 6.14 (b) also demonstrates, that a resetting of the initial condition to zero

for every meal responses would not be plausible. In this context, a minor weakness of

the BMA approach can be seen in the transition between lunch and dinner in plot (b):

because the results are combined for every response individually, different models may

be favoured from one response to the next, leading to discontinuous transitions between

responses. In terms of the inferred GA profiles in Figure 6.14 (c), it is demonstrated

that the profiles have similar shapes and can be estimated with high precision. The

differences are again due to the fact that two different input functions are used and that

the GOMs receive no insulin profiles as input.
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6.5.4 Model validation

6.5.4.1 Estimation of insulin sensitivity

In terms of the ability of the GOMs to provide information on insulin sensitivity, it

has already been shown in Figure 6.9 (c) that the models provide a parameter SG that

is significantly correlated to a validated insulin sensitivity measure derived from the

OMM. A more detailed plot of the correlation between SG and SI for each meal type

is given in Figure 6.15. For comparison with other methods of insulin sensitivity es-

timation discussed in section 2.1.3, Figure 6.15 also provides the Pearson correlation

coefficients and results of a linear regression analysis. For the case of the HCHO meal,

a single outlier value of the 30 SG estimates was removed as the Pearson correlation is

highly sensitive to the presence of outliers. Figure 6.15 demonstrates that the slope of

the linear trend line and thus the range of SG values are different for each meal type.

Although the GOMs account for different CHO amounts in the meal types through the

adjustment of the AUC of the input function, the SG values are significantly higher

(p < 0.05) in the HPROT meal type compared to the HCHO meal type, as already

shown earlier in Figure 6.10. This difference is not present in the respective SI results,

as demonstrated in Chapter 4, which weakens the interpretability of SG as insulin sen-

sitivity across different meal types.

Figure 6.15: Pearson correlation analysis of the GOM parameter SG against OMM
estimated insulin sensitivity SI for meal types (a) STAND (b) HCHO and (c) HPROT.
The black line and equation give the results of a linear regression analysis. It should
be mentioned that the y-axis is scaled differently in each plot to fit the respective SG
values.

Taking the meal with high CHO content (HCHO) in Figure 6.15 (b), the Pearson
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correlation between SG and SI of 0.8 is comparable to results in the literature. Studies

using the conventional OMM to estimate insulin sensitivity found correlation coeffi-

cients of 0.75 against the IVGTT minimal model [71] and 0.81 against HEC results

[123]. In comparison to other indices of insulin sensitivity, such as HOMA-IR (r = 0.65

in comparison to HEC results) and the Matsuda index (r = 0.73 in comparison to HEC

results) [35] the results of the HCHO meal show increased correlation.

There are two inherent limitations in the approach to using only glucose data to

assess insulin sensitivity. Firstly, as already shown in the cross-correlation analysis,

the dynamic properties of glucose and insulin levels, e.g. peaks, can exhibit very little

similarity, especially in meals with low relative CHO content. The second limitation

stems from the fact that absolute levels of insulin are not always correlated to absolute

glucose levels, even when the dynamical properties of both signals are identical. This

means that two subjects could have quantitatively similar glucose profiles but exhibit

vastly different absolute insulin levels and thus also have different insulin sensitivities.

Detecting this difference using glucose data alone is thus inherently impossible. This

reasoning can also explain the differences in SG values between meal types, mentioned

earlier in this section. It could, therefore, be concluded that the correlations between

glucose and insulin data give an estimate on the upper bound to the accuracy of insulin

sensitivity estimation that can be achieved with GOMs as demonstrated in Figure 6.9

(c).

Based on these results and considerations, the use of the proposed GOMs as a clini-

cal test to measure insulin sensitivity cannot be justified as more elaborate experiments

using HEC results would be required. The demonstrated correlations are nevertheless

promising and indicate that the models can provide valuable information about insulin

sensitivity from glucose data alone.

6.5.4.2 Estimation of glucose appearance

The last requirement for the GOMs developed in this thesis is the ability to estimate

the meal-related appearance of glucose. The model comparison results in Figure 6.9

(d) show that the GA profiles of the GOMs have a larger deviation from the reference

profiles of the piecewise linear function RaPL than inferred profiles of RaLN obtained

in the previous chapter. This is also demonstrated in Figure 6.16 where all inferred
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GA profiles are compared. Similar to the log-normal input function RaLN used in the

OMM (blue), the function RaLN as inferred by the GOMs (red) shows a large difference

to the piecewise-linear function RaPL (black) in the first 30 min of the response. This

difference stems from the particular properties of RaLN and was also observed in the

previous chapter. Seeing that the model fit is improved during the first 30 min of the

response (Figure 6.12), the same arguments already made in the previous chapter for a

more realistic estimation using RaLN can be put forward. This effect is exemplified in

Figure 6.14 in the breakfast response.

Another deviation between RaLN from the GOM (red) and the piecewise-linear func-

tion RaPL (black) is the underestimation of GA in the second half of the GA profile

after 120 min. As demonstrated in Figure 6.16, this deviation is not present in the RaLN

profile inferred from the OMM (blue) in the previous chapter. This underestimation of

the GA of the GOM in the second half of the response can be explained by the fact

that it is common for insulin levels to remain elevated above baseline in the second half

of the response when glucose levels have already reached baseline. This means that the

OMM infers elevated GA levels to keep the glucose at baseline. Since the GOM does

not have the insulin data, it is impossible to account for this effect. An example of this

can also be seen in the dinner response in Figure 6.14.

Figure 6.16: Comparison between the inferred glucose appearance profiles for (a)
STAND, (b) HCHO and (c) HPROT meal types. The results are given as the median
and interquartile range.

Despite these differences, it can be concluded that the GOMs are capable of inferring

the general shape of the GA profiles, with evidence of an improved estimation in the

first 30 min of the response. This makes it possible to assess differences in GA between
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meal types using the GOMs. An example of such an analysis is provided in Figure

6.17, where it is demonstrated that the GA inferred by the GOMs displays the same

differences between the STAND and HCHO meal type as the GA inferred by the OMM.

In particular, both models reveal that share of glucose absorbed within the first 60 min

after meal consumption is reduced in the HCHO meal, as already mentioned in section

4.5.4.

Figure 6.17: Comparison of the share of absorbed glucose within the first 60 min of
meal consumption, as inferred by OMM and GOM for the STAND and HCHO meal
types. The p-values give the result of a Wilcoxon ranksum test.

6.6 Summary and conclusion

In this chapter, the main aim of this thesis has been reached successfully by develop-

ing and subsequently validating glucose-only models for the description of postprandial

glucose responses. The proposed models use physiological principles from models of

insulin secretion, as well as results from examining the dynamical glucose-insulin rela-

tionship. Furthermore, a novel formulation of the meal-related glucose appearance is

incorporated. The proposed GOM approach combines the results of three models on

an individual level using a Bayesian model averaging (BMA) technique which avoids

the need to choose a single model as most suitable in all circumstances. This BMA

technique gives the modelling approach the necessary flexibility to be applied to other

datasets including other meal types and subjects with varying levels of glycaemic con-

trol. The GOM results are validated against the results from the well-established OMM

using glucose and insulin data. It has been demonstrated that the GOMs (1) achieve a

slightly more accurate description of glucose dynamics (2) contain a newly introduced
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parameter that shows a significant correlation to insulin sensitivity estimates from the

OMM and (3) enable the inference of GA profiles that are similar to the GA profiles

inferred with the OMM, allowing the comparison of GA profiles between meal types.

Shortcomings of the presented work so far stem from the properties of the used

dataset and associated experimental protocol, as only NGT subjects and glucose data

from venous blood sampling were considered. Additionally, the meals were consumed at

regular intervals, not representative of daily life. For successful application, the model

has to be useful in conjunction with data from continuous glucose monitoring (CGM)

collected on Pre-DM and T2DM subjects. This will be subject of the remaining chap-

ters concerned with the collection of a suitable dataset and validation of the developed

GOMs.



Chapter 7

Collection and analysis of

experimental data in subjects with

varying glucose tolerance under

controlled and normal life

conditions

7.1 Introduction

All preceding modelling efforts have utilised the Nuttall dataset containing glucose and

insulin responses from subjects with normal glucose tolerance (NGT) recorded through

frequent venous blood sampling. Meals were additionally consumed under controlled

conditions at regular intervals, not representative of daily life. Collecting this type of

data in clinical practice is highly infeasible, therefore creating the need to design a

study with a more practically oriented data collection process. The main purpose of

the described experimental study is to provide an independent pilot dataset to validate

the developed models and assess the utility of the experimental techniques. The pilot

dataset thereby complements the Nuttall dataset and focuses on:

• Including subjects with Pre-DM and T2DM, as they form the main target group

for application of the developed models. NGT subjects will also be recruited as a

control group.

129
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• Recording glucose data using continuous glucose monitoring (CGM) over multiple

days under controlled and free-living conditions. CGM technology is increasingly

used in the management of T2DM [16–18] and can provide a far more detailed

picture of BG levels than frequent blood sampling or self-monitoring of blood

glucose (SMBG), even outside the hospital.

• Involving a single meal test during which blood sampling for the measurement

of glucose and insulin levels is carried out. This provides the necessary data

to identify the oral minimal model for comparison with the glucose-only models

identified from the CGM data.

• Including controlled exercise periods to examine their effect on glucose dynamics.

Besides food intake, exercise has a significant influence on glucose dynamics [165,

166] and it is an important tool for the treatment of Pre-DM and T2DM, thus

warranting the examination of its effect on glucose dynamics.

This chapter describes the subject cohort, experimental procedures, presents the

collected data and carries out a basic model-free data analysis. The application of the

dataset to the models developed previously will be the subject of the following chapter.

7.2 Methods

7.2.1 Subject recruitment

Before the experimental study, ethical approval was given from the National Health Au-

thority Research Ethics Committee, North West - Liverpool East, United Kingdom (ID:

17/NW/0277). This includes compliance with the Ethical Principles for Medical Re-

search on Human Subjects established in the Declaration of Helsinki by the World Medi-

cal Association. The study was sponsored by, and conducted at the Human Metabolism

Research Unit (HMRU) at the University Hospitals Coventry and Warwickshire NHS

Trust. The goal of the recruitment was to enrol participants with NGT, Pre-DM and

non-insulin dependant T2DM into the study. Potential subjects were contacted through

a number a means including university newsletters, leaflets, public speaking and word of

mouth. Prospective participants were considered to have T2DM if they had been diag-

nosed at least one year prior to the study and taking oral antihyperglycaemic drugs. No

diabetes screening was carried out before the study, meaning that the exact glycaemic
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status of subjects considered to have NGT and Pre-DM, was only determined during

the study. The subjects volunteered for the study and gave written consent which was

obtained by a trained and qualified member of staff at the HMRU.

7.2.2 Continuous glucose monitoring

To record blood glucose profiles, subjects were fitted with an abdominal Enlite glucose

sensor in conjunction with the Medtronic iPro2 CGM system (Medtronic PLC, Min-

neapolis, MN, USA). This CGM device provides glucose levels with a sampling period of

5 min and is blinded to the user, i.e. glucose measurements are recorded for retrospec-

tive analysis and not shown in real-time, therefore requiring no handheld device. The

subjects were instructed to perform four finger-prick calibration measurements per day

(after wake-up, before lunch, before dinner and before bed) using the Abbott Freestyle

Lite SMBG device (Abbott Laboratories, Abbott Park, IL, USA). After the study, the

blood glucose profiles were calculated from interstitial fluid (ISF) glucose levels beneath

the skin and SMBG calibrations using the Envision Pro software (Medtronic PLC, Min-

neapolis, MN, USA). During this calibration process, the ISF glucose levels are shifted

forwards by 10 min before the blood glucose profile is calculated to counteract the time

delay between ISF and blood glucose levels mentioned in section 2.2. More detailed

information on the calibration algorithm is not provided by the manufacturer.

7.2.3 Experimental protocol

In conjunction with the recommended lifetime of the CGM sensors, the study was car-

ried out over a period of six days. Five of the six days were spent under normal living

conditions, meaning that the subjects went about their normal daily life while keeping

a diary on food intake and exercise. On day one, the experiment was initiated during

a short visit to the research site (HMRU). Here, the CGM devices were fitted, the sub-

jects were educated on the calibration routine, their medical history was recorded and

basic anthropometric measurements such as height and weight were taken. Addition-

ally, the subject’s body composition, i.e. fat and lean weight, was determined through

air displacement plethysmography using a BodPod 2000A (Cosmed, Rome, Italy). On

the evening of day three, the subjects returned to the HMRU for a 24-hour inpatient

monitoring session. This meant that subjects were confined to a small observation room

with food and exercise routine being precisely controlled. After the 24-hour inpatient
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monitoring session subjects resumed free-living conditions. A detailed schedule of the

inpatient monitoring session is provided in Table 7.1. At the end of the experiment, on

day six, subjects returned the CGM and SMBG devices as well as their diaries and the

experiment was terminated.

Table 7.1: Detailed schedule of the 24-hour inpatient monitoring session at the Human
Metabolism Research Unit (HMRU).

Time Event

19:00 Arrival at HMRU

20:00 Standard meal (dinner)

22:00 Lights out

07:00 Wake-up

08:30 Oral glucose tolerance test (breakfast)

12:00 - 12:30 30 min stepping excercise (80 steps per min)

13:00 Low CHO meal (lunch)

17:30 - 18:00 30 min stepping excercise (120 steps per min)

18:45 Standard meal (dinner)

19:00 Leave HMRU

7.2.3.1 Diet

For the inpatient monitoring session, the diet was as follows:

• Breakfast: Oral Glucose Tolerance Test (OGTT) containing 75 g anhydrous glu-

cose in a liquid solution. To comply with the standard test procedure [34], the

size of this meal was not scaled according to body weight or calorie demand.

• Lunch: Low CHO meal containing 20 % CHO, 40 % fat and 40 % protein. The

meal was composed of lentil soup, croutons, cheese, natural yoghurt and a milk-

based protein shake. The size was scaled to provide 40 % of the estimated daily

calorie demand.

• Dinner: Meal of standard composition containing 50% CHO, 35 % fat and 15 %

protein. The meal was composed of rice and chicken curry. The size was scaled

to provide 40 % of the estimated daily calorie demand.
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Water or non-caffeinated herbal teas were provided ad libitum. Subjects were re-

quested to gradually reduce caffeine intake before the experiment, to minimise with-

drawal effects. The meal sizes were scaled to provide an isocaloric diet. For that, the

resting energy expenditure was calculated based on lean mass using the Katch-McArdle

formula [167] and activity multipliers between 1.2 and 1.4 were used to estimate the

total daily calorie demand. These activity multipliers were based on recommended val-

ues for the mainly sedentary behaviour exhibited by the subjects during the inpatient

monitoring session [168].

During normal living conditions, the subjects’ diet was not restricted, but recorded

via a detailed food log. These diets included mainly standard food items from west-

ern/British cuisine such as starchy foods (bread, rice, cereals, potatoes, pasta, etc.),

fruit and vegetables (bananas, apples, peas, zucchini, etc.), meat and fish (chicken, cod,

sausage, ham, etc.), eggs and dairy products (milk, yoghurt, cheese, etc.) and sweets

(cake, biscuits, chocolate, etc.).

7.2.3.2 Exercise

The exercise during the inpatient monitoring session consisted of stepping up and down

a standard height exercise step (height 150mm) at varying rates and thus intensities

were controlled by a metronome (see Table 7.1). One cycle of stepping up and down

consists of four separate steps (two up and two down).

7.2.3.3 Blood sampling

Venous blood samples were collected before (fasted) as well as 15, 30, 60 and 120 min

after the OGTT was carried out. For reasons not related to the experiments themselves,

the sample analysis was carried out by two different and experienced laboratories. The

first laboratory analysed the samples from subjects S2 and S3 (see Table 7.2) and

used the Roche Cobas 8000 Enzymatic (Roche Diagnostics, Basel, Switzerland) for glu-

cose measurement and the Mercodia Iso-Insulin enzyme-linked immunosorbent assay

(Mercodia, Uppsala, Sweden) for insulin measurement. The samples for the remaining

subjects were analysed with the Abbott Alinity glucose and insulin reagent kits (Ab-

bott Laboratories, Abbott Park, IL, USA), respectively. Regarding the comparability

of the insulin measurement results between the two laboratories, it can be stated that

the Mercodia Iso-Insulin assay has been shown to have a non-significant bias against
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the mean of eleven other insulin assays [54]. The Abbott assay used by the second

laboratory is new and no comparisons to other assays are published or provided by the

manufacturer. Based on the best available information it can thus be concluded that

the insulin measurements for the two techniques are comparable.

The fasting blood sample was used to determine HbA1c. Additional to the venous

blood sampling, SMBG tests were conducted approximately at -10, 15, 30, 60, 90, 120,

180 and 270 min after the OGTT.

7.2.4 Data analysis

The CGM dataset is analysed from 19:00 on Day 2 to 19:00 on Day 6. This excludes

the first 24 hours of data due to inaccuracies in the measurement caused by a localised

inflammatory response at the insertion site [169]. In accordance with the protocol of

the inpatient monitoring session in Table 7.1, a day is defined as the period between

19:00 on the current day and 19:00 on the following day.

Based on the laboratory glucose and insulin measurements during the OGTT, in-

dices of insulin sensitivity and beta-cell function are calculated. Insulin sensitivity is

estimated with the Matsuda index [170], calculated as follows

Matsuda index =
10, 000√

G0 · I0 ·G · I
, (7.1)

where G0 and I0 represent fasting glucose and insulin levels, respectively and G and

I the mean glucose and insulin levels during the OGTT, i.e. at 0, 15, 30, 60 and 120

min, respectively. The Matsuda index has been shown to correlate well with the OMM

derived insulin sensitivty in a NGT population [171]. The beta-cell function is estimated

with the ratio of glucose and insulin AUCs [172] calculated as follows

AUCI/G =
AUCI
AUCG

, (7.2)

where the individual AUCs are calculated using the trapezoidal rule in MATLAB. The

choice of these two indices is based on a publication by Retnakaran et al. [33], where it

was found that the two indices provide the best hyperbolic relationship between insulin

sensitivity and beta-cell function. This relationship describes the fact that different lev-

els of glycaemic control typically form distinct hyperbolas on a plot of beta-cell function
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and insulin sensitivity and has been introduced in section 2.1.2. A calculation of these

indices for insulin sensitivity and beta-cell function is not possible in the Nuttall dataset

as they require the data to be collected during a standard OGTT.

7.3 Results and discussion

7.3.1 Subject population

The recruitment process led to a total number of eight study participants. The relevant

details for each subject are given in Table 7.2.

Table 7.2: Details of the subjects included in the experimental study.

Subject
ID

Age Sex BMI
[kg/m2]

Lean
weight
[kg]

Glycaemic
status

HbA1c
[mmol/mol]

Treatment
regimen

S1 45 F 23.6 42.5 NGT 29 -

S2 49 M 26.8 65.5 NGT 33 -

S3 46 M 28.5 68.9 NGT 35 -

S4 38 F 34.2 49.3 Pre-DM 38 -

S5 44 F 49.8 59.3 Pre-DM 46 -

S6 52 M 36.1 67.1 T2DM 45 Metformin

S7 57 M 26.0 64.1 T2DM 43 Metformin,
Glimepiride

S8 61 M 25.2 55.9 T2DM 76
Metformin,
Canagliflozin,
Sitagliptin

NGT and Pre-DM subjects were classified into their respective categories by HbA1c,

using the criteria presented in section 2.1.2 and repeated in Table 7.3.

Table 7.3: Criteria for the diagnosis of Pre-DM and T2DM based on HbA1c [34].

NGT Pre-DM T2DM

HbA1c [mmol/mol] ≤ 38 39 - 47 ≥ 48

Subject S4 is considered to have Pre-DM despite the HbA1c being below the provided
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threshold of 39 mmol/mol. This choice was made because this subject had been diag-

nosed with T2DM, i.e an HbA1c greater than 48 mmol/mol, approximately one year

prior to the study, but achieved a significant drop in HbA1c without pharmacological

intervention.

7.3.2 Deviations from the experimental protocol

Multiple deviations from the planned experimental protocol occurred during the inpa-

tient monitoring session.

• In the case of subject S1, the inpatient monitoring session had to be aborted

approximately 2.5 h after the OGTT due to the subject temporarily feeling unwell.

The CGM was continued for the remainder of the study as the subject recovered

within hours of leaving the HMRU.

• In subject S4, venous access could not be established and blood sampling could

therefore not be carried out, which led to the delayed consumption of the OGTT

meal by about 25 min. The HbA1c result was obtained from a routine blood

sample taken independently of the experiment about one month prior to the study.

The subject was also unable to perform any of the exercise sessions due to fatigue.

• Subject S5 was unable to perform the first exercise session due to knee pain. The

second exercise session was thus adapted by instructing the subject to step on the

spot at the given frequency of 120 bpm, which could be carried out without pain.

7.3.3 Continuous glucose monitoring

The CGM profiles could be fully recovered in all subjects with no loss of data. The

results from the CGM measurements are summarised in Figure 7.1, which demonstrate

increased median glucose levels and glucose variability in Pre-DM and T2DM subjects

in comparison to NGT subjects. Additionally, subjects with decreased glucose tolerance

display a greater individual day-to-day variability. These differences in glycaemic vari-

ability align with the findings from a high number of studies with much larger subject

populations (see reviews [173–175]). Due to the low number of subjects in our study,

further analysis of this particular aspect of the data is not carried out.

A novel result based on the unique design of our study can be obtained from the

comparison between the inpatient monitoring session on Day 2 and the remaining days
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spent under free-living conditions. Here, subjects S1, S3, S5 and S7 show increased

median glucose levels. This could be explained by two possibly overlapping effects,

(1) the daily routine, especially the prescribed diet, during the inpatient monitoring

session could have been significantly different to the other days and (2) the unfamiliar

environment at the research site led to psychological stress which is known to cause hy-

perglycaemia in T1DM subjects [176]. This effect of increased glucose levels during the

inpatient monitoring session demonstrates caution when extrapolating results obtained

under controlled conditions to everyday life and highlights the importance of collecting

data under both circumstances.

Figure 7.1: Comparison of glucose levels between subjects during the entire study
period. Days 2-6 are presented in order with the black datapoint giving the results of
all days combined. Day 3 (red) is the period of the inpatient monitoring session at the
HMRU. The data are given as the median and interquartile range. In subject S1, day 3
only uses glucose data until 11:00 as this was the time the inpatient monitoring session
was aborted.

The CGM profiles of the subjects during the inpatient monitoring session is depicted

in Figure 7.2. As expected, the profiles are very different between subject groups,

despite all subjects following the same routine. The following dynamical features are of

particular interest.

1. Basal glucose behaviour

The glycaemic behaviour during the night, i.e. under fasted or basal conditions,

reveals variabilities in the T2DM group, whereas NGT subjects show almost con-

stant glucose levels. Especially in subjects S5, S6 and S8, there is an upwards

trend starting from around 04:00 until subjects were awoken at 07:00. This effect,
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Figure 7.2: CGM profiles of (a) NGT, (b) Pre-DM and (c) T2DM subjects during
the inpatient monitoring session. The dashed vertical lines give the approximate times
of meal consumption and the grey areas indicate the exercise periods. Since neither of
the two Pre-DM subjects carried out the first exercise period, the respective grey area
in the centre plot was omitted. The coloured areas give the ranges of hypoglycaemia
(red), euglycaemia (green) and hyperglycaemia (yellow).

known as the dawn phenomenon, is common in non-insulin dependant T2DM

[177]. A similar drift in basal glucose levels in T2DM could also be present dur-

ing the day, which has to be considered when making assumptions on the basal

glucose levels during modelling.

2. Low CHO meal

The low CHO meal consumed for lunch leads to very small glycaemic excursions,

especially apparent in the NGT subjects where almost no excursions are observed,

as indicated from 13:00 onwards in Figure 7.2. This is similar to the responses to

the meal with high protein composition (HPROT) in the Nutall dataset, which

has a similar composition. Pre-DM and T2DM subjects show a more pronounced

response, however, their BG levels have not reached steady-state by the time lunch
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is consumed, despite a 4.5-hour gap between meals. This means that the persisting

effects from the OGTT have a significant influence on the lunch response, which

has to be considered during modelling.

3. Exercise

The effects of the exercise session on BG dynamics are also different among sub-

ject groups. NGT subjects show almost no response to either of the two 30-min

exercise sessions of different intensity. In contrast to that, Pre-DM and T2DM

subjects show a decrease in BG levels in response to exercise. During the first

session of lower intensity, the already existing downward trend is accelerated in

T2DM subjects. Similarly, during the second exercise session where prior BG

levels are more stable, a decrease is observed. In subject S6 the second exercise

session leads to deceleration of the existing upward trend. A comparison be-

tween the effects of the two exercise sessions is not sensible because the glycaemic

conditions before the exercise are not similar enough. The results nevertheless

demonstrate the hypoglycaemic and thus beneficial effects of exercise in Pre-DM

and T2DM.

The glycaemic behaviour following the OGTT will be examined separately in more

detail in the following section.

7.3.4 OGTT and blood sampling

The results of the glucose and insulin measurements during the OGTT are displayed

in Figure 7.3. The OGTT glucose responses in Figure 7.3 (a) were recorded by using

venous blood sampling, SMBG and CGM allowing the comparison between measure-

ment techniques. CGM and SMBG are not independent because the CGM calibration

algorithm uses the SMBG results to calculate its glucose profiles. It is thus expected

that the SMBG and CGM measurements agree well with each other as is the case in

subjects S4, S5, S6 and S8. In the remaining subjects, especially in S7, the CGM pro-

file lags behind the SMBG results by up to 25 min, although the raw CGM signal is

shifted forwards by 10 min before the glucose profile is calculated. This demonstrates

that the time lag exhibits inter-subject variability [80, 178]. From a signal processing

perspective, the interstitial fluid can be thought of as a low-pass filter attenuating high-

frequency changes in BG levels [80, 179, 180]. These changes are particularly prominent
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in the excursions of NGT subjects and can explain the fact that CGM profiles show a

higher deviation from SMBG values in comparison to the other subject groups. The

inclusion of this effect in models using CGM data will be discussed in the next chapter.

Figure 7.3: (a) Individual plots of glucose levels from CGM, SMBG and blood sam-
pling (BS) during the OGTT. The grey areas indicate the period of exercise in those
subjects that performed it and the red sections of the CGM profiles indicate BG levels
below the hypoglycaemia threshold of 3.9 mmol/L. (b) Individual plots of insulin levels
in response to the OGTT. As explained before, the blood sampling data for subject S4
are missing because venous access could not be acquired.
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The blood sampling and SMBG/CGM measurements generally agree well, except for

subject S8, where the SMBG results seem to lag behind the venous blood sampling re-

sults. This could be a result of that subject’s history of peripheral neuropathy impairing

blood circulation in the extremities, thus delaying the glucose levels at the finger-tips

as measured by the SMBG with respect to venous blood sampled from the inside of the

elbow.

The results of the insulin measurements in Figure 7.3 (b) reveal substantial differ-

ences between subjects. To interpret these results together with the glucose levels in

terms of insulin sensitivity and beta-cell function, the respective indices previously men-

tioned are calculated and their relationship is displayed in Figure 7.4.

Figure 7.4: Indices of insulin sensitivity and beta-cell function plotted against each
other indicating an inverse relationship within subject groups.

Figure 7.4 shows an inverse relationship between insulin sensitivity and beta-cell

function. It is additionally indicated that the NGT and T2DM subgroups populate two

distinct hyperbolas, as it was explained earlier, with the single Pre-DM subject lying in

between. This information is of clinical relevance as it could be used to inform treatment

decisions, which can be exemplified in subjects S5 and S7. Both subjects have a similar

HbA1c with 45 and 43 mmol/mol respectively, but the results for insulin sensitivity

and beta-cell function could have different implications for therapy. Subject S5 has the

lowest insulin sensitivity and highest body-mass-index and could thus most benefit from

lifestyle interventions such as diet, exercise and weight loss which can increase insulin

sensitivity [3]. In contrast, subject S7 already displays good insulin sensitivity, but poor

beta-cell function, despite taking the insulin secretagogue Glimepiride (see Table 7.2).

This subject could thus potentially benefit from further pharmacological interventions

with additional beta-cell stimulants or external insulin.



Chapter 7. Collection and analysis of experimental data 142

Examining the relationship between the dynamic properties of the CGM glucose

profiles and insulin sensitivity estimates indicates a connection between the two which

corroborates the goal of developing glucose-only models for the extraction of insulin

sensitivity information taken in this thesis. It also highlights the benefit of using CGM

to record glucose responses during an OGTT as it allows the simple identification of

relevant glycaemic patterns beyond the typical observation period of 120 min. In par-

ticular, the following observation can be made: subjects S3, S5 and S6 with low insulin

sensitivity and adequate beta-cell function, exhibit hypoglycaemia approximately 180

min after the OGTT was administered, as displayed by the red sections of the CGM

profiles in Figure 7.3 (a). Subjects with higher insulin sensitivity such as S1, S3 and

S7 do not display this delayed hypoglycaemia. This can be explained by the fact that

subjects with low insulin sensitivity respond to the initial glucose rise with excessive

secretion of insulin, leading to delayed hypoglycaemia. Recognising the occurrence of

this effect in subject S6, where no insulin data are available, therefore suggests low

insulin sensitivity in this subject.

7.4 Summary and conclusions

This chapter described the collection and subsequent model-free analysis of the data in

eight subjects with varying glucose tolerance during an inpatient monitoring session and

normal daily life. The novelty in the experimental design was given by the use of CGM

during both free-living and controlled conditions, as well as recording both glucose and

insulin measurements and CGM data during an OGTT. It was revealed that glucose

profiles can be different between controlled and free-living conditions, which has impli-

cations on the informative value of results obtained under controlled conditions when

extended to everyday life. Another important finding was that glucose profiles after the

OGTT showed delayed hypoglycaemia in subjects with low insulin sensitivity.

In line with the scope of a PhD project, the experiment included far fewer subjects

than the Nuttall dataset and has thus the character of a preliminary study. The re-

sults, however, warrant more extensive data collection efforts on additional subjects to

reinforce the preliminary findings. Given the problems in executing the exercise routine

for some subjects, an alteration to the experimental protocol, e.g. omitting the first

exercise session before lunch, should be considered.



Chapter 8

Model-based analysis of

experimental data in subjects with

varying glucose tolerance

8.1 Introduction

The main purpose of this chapter is to validate the previously introduced contributions

to the oral minimal model (OMM) and developed glucose only models (GOM) using the

new dataset described in the previous chapter. In particular, the glucose and insulin

measurements as well as the CGM recordings during an inpatient monitoring session

will be utilised. This provides a unique opportunity to identify the GOMs from CGM

data and validate their results by comparison with the results from the OMM identified

with blood sampling data.

8.2 Methods and modelling

8.2.1 Identification of oral minimal models

As explained in the previous chapter, the glucose and insulin data required for the iden-

tification of the OMM were recorded after an OGTT, conducted during the inpatient

monitoring session. Venous blood sampling was carried out fasted (0 min) as well as

15, 30, 60 and 120 min after oral glucose ingestion.

To identify the OMM with the conventional piecewise-linear input function rep-

143
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resenting glucose appearance under these new experimental conditions, the following

formulation is used

dG(t)

dt
= −G(t)X(t)− p1[G(t)−Gb] +

RaPL(t)

V
, G(0) = Gb, (8.1)

dX(t)

dt
= −p2(X(t) + SI [I(t)− Ib]), X(0) = 0, (8.2)

RaPL(t) =


ki−1 +

ki − ki−1
ti − ti−1

(t− ti−1) for ti−1 ≤ t ≤ ti i = 1 . . . 4,

k4 exp(−α(t− t4)) for t > t4.

(8.3)

In comparison to model formulation (4.5) - (4.7) utilised in Chapter 4, the initial con-

dition for G(t) is set to its baseline Gb and the initial condition of X(t) is set to zero,

to reflect fasting conditions. Additionally, the term Rap(t) representing a persisting

appearance is removed as only a single response from fasting conditions is described.

Regarding the piecewise-linear input function RaPL in (8.3), the altered sampling

protocol requires adaptations to the number of breakpoints. In Chapter 4, utilising the

Nuttall dataset with a tighter and longer sampling schedule, the breakpoints for the

piecewise linear function were set at 0, 10, 30, 60, 90, 120, 180 and 240 min, with the

height of the breakpoint at 0 min, i.e. k0 is set to zero. To adhere to the sampling

protocol of the new dataset, the breakpoint time points are reduced to t0 − t4, at 0,

10, 30, 60, 120 min. This eliminates the breakpoints at 180 and 240 min as they lie

beyond the duration of the blood sampling. The breakpoint at 90 min is also removed

as it would lie between the sampling point at 60 and 120 min, making it difficult to es-

timate the height of this breakpoint with acceptable precision. Beyond the observation

period of 120 min, the function is described by an exponential decay with fixed constant

α = 0.017 min-1, as recommended in OGTTs with a 120 min response duration [123].

Identical to Chapter 4, the area under the input function curve is restricted during

the parameter estimation. For that the height parameter k4 at 120 min is replaced with

the following expression

k4 =
α(D · f − 5(3k1 + 5k2 + 9k3))

1 + 30α
(8.4)

where D is the amount of glucose in the meal per kg of body weight and f is the fraction

of ingested glucose that is absorbed, fixed at 0.9 [123].
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To identify the OMM with the newly proposed, differentiable function RaLN , con-

sisting of two overlapping log-normal components (see Table 5.2), model expressions

(8.1) - (8.2) are used. In contrast to the piecewise-linear function, no adaptations to

RaLN are necessary, which demonstrates the practicability of the new input function

when applied to new data collected under altered experimental conditions.

The prior distributions over unknown parameters are provided in Table 8.1. The

basal levels of glucose and insulin Gb and Ib, respectively, are fixed to the glucose and

insulin measurements in the fasting sample. Both models are identified using the VB

approach and the details of model implementation in the VB toolbox are provided in

Appendix C.1.2.

Table 8.1: Details on the unknown model parameters, their prior distributions and
fixed values used in the identification of the OMM.

Parameter Unit Prior
median ± CV %

Description

p1 min-1 0.025 ± 25 [72] Glucose effectiveness

p2 min-1 0.012 ± 40 [72] Rate constant governing the
decay of X(t)

SI
10-4 min-1

per mU/L
7.1 ± 100 [72] Insulin sensitivity

V L/kg 0.145 (fixed) [72] Glucose distribution volume

λ mmol/L 0.11 ± 10 (fixed) Standard deviation of measure-
ment error

f - 0.9 (fixed) [72] Fraction of ingested glucose that
is absorbed

D mmol/kg (fixed) Amount of CHO per kg of body
weight in the OGTT

For RaPL

k1, k2, k3 µmol/kg/min [3.2, 7.3, 5.4]
± 50 [72]

Levels of GA at time of break-
points. The priors are scaled
by D · f

t0 - t4 min [0, 10, 30, 60, 120]
(fixed) [71]

Times of breakpoints

α min-1 0.017 (fixed) [71] Decay rate of RaPL after
120 min
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For RaLN

T1, T2 min [30, 100] ± 30 Peak times of first and second
components of RaLN

W1, W2 - 0.5 ± 30 Widths of first and second
components of RaLN

RH - 0.7 ± 30
Contributions of the AUCs of the
individual components to the overall
AUC of RaLN

8.2.2 Identification of glucose-only models

8.2.2.1 Data description

The GOMs are identified from the CGM data recording both OGTT and lunch responses

during the inpatient monitoring session. The OGTT response is considered to start at

the time of consumption and end when lunch was eaten. Similarly, the lunch response

is considered to start when lunch was consumed and end before dinner was consumed.

Although the food schedule was controlled during the inpatient monitoring session, the

precise time of meal consumption was slightly different for each subject, leading to

marginally different response durations. Generally, however, the considered durations

for OGTT and lunch responses are 270 min and 345 min, respectively.

8.2.2.2 Model formulation, prior choice and identification procedure

No changes to the formulation of the glucose-only models (6.10) - (6.12) are required,

meaning the model equations remain as follows

dG(t)

dt
= −G(t)X(t)− p1 [G(t)−Gb] +

RaLN (t) +Rap(t)

V
, G(0) = G0, (8.5)

dX(t)

dt
= −p2 [X(t)− SGZ(t, Gb)] , X(0) = X0, (8.6)
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(8.7)

The three proposed formulations for the functions Z, i.e. ZLIN , ZLOG and ZPOS

presented in Table 6.1 are also unchanged. The CGM measurement process is described

by

y(t) = G(t) + ε, ε ∼ N (0, λ2) (8.8)

where y(t) is the observed CGM profile and ε is the normally distributed measurement

error with zero mean and standard deviation λ.

Regarding the choice of priors and model identification procedure, the following

changes in comparison to the procedures described in Chapter 6 are made.

• Due to the variability in basal glucose levels in the T2DM subject group, dis-

cussed in section 7.3.3, the parameter Gb, describing the baseline glucose levels in

expressions (8.5) and (8.6), is considered to be an unknown, normally distributed

parameter instead of fixing it to the fasting glucose level. For both OGTT and

lunch response, the prior of Gb is determined by the fasting glucose level and a

small CV of 2 %, which is calculated as the average BG level in the 30 min prior

to the OGTT. The narrow prior distribution does not require a transformation

to a log-normal distribution and can keep the baseline level within physiologi-

cal ranges. It also does not warrant a repetition of the structural identifiability

analysis already carried out in Chapter 6.

• The prior median of the parameter SG, describing the coupling between the func-

tion Z and the stateX(t) in (8.6) and correlating with insulin sensitivity estimates

SI , is reduced from 0.05 min-1 to 0.02 min-1.This change reflects the fact that the

study cohort includes subjects with impaired glucose tolerance whose insulin sen-

sitivity and thus SG values are expected to be reduced.

• The measurement uncertainty defined by the parameter λ is considered to be

unknown because the previous chapter revealed inter-subject variability regarding
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the accuracy of the CGM profiles. The prior mean for λ for the OGTT response

is set to 0.1 mmol/L, as in Chapters 4 to 6 with a large CV of 100 %. For the

subsequent lunch response, the prior for λ is defined as the posterior distribution

inferred from the OGTT response.

All other prior distributions and techniques of the estimation procedure are identical

to Chapter 6. This includes the calculation of the persisting absorption Rap(t) during

lunch from the inferred OGTT appearance profile and the determination of the initial

conditions as explained in section 6.4.4. As before, the three models, namely ZLIN ,

ZLOG and ZPOS are identified separately on every response and the results are combined

using the Bayesian model averaging (BMA) technique.

8.3 Results and discussion

8.3.1 Oral minimal models

8.3.1.1 Model fit

The results of the model inversion of the OMM using both the piecewise-linear input

RaPL and the log-normal input RaLN are displayed in Figure 8.1. As mentioned in

section 7.3.2, no blood sampling data could be collected for subject S4, i.e. the OMM

could not be identified in this case.

Figure 8.1: Results of the model inversion of the OMMwith both input functionsRaPL
and RaLN in terms of the model output. The results are given as mean and standard
deviation derived from a deterministic sensitivity analysis as described in section 3.4.
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Both forms of the OMM using the two input functions can describe the data well, as

demonstrated in Figure 8.1 and also indicated by the low mean and standard deviation

of the absolute weighted residuals of 0.09 ± 0.08 for RaPL and 0.07 ± 0.08 for RaLN .

For comparison, using the Nuttall dataset yielded 0.50 ± 0.48 for RaPL and 0.37 ± 0.28

for RaLN .

8.3.1.2 Parameter estimates and correlation

The posterior distributions of the system parameters p1, p2 and SI are displayed in

Figure 8.2. Furthermore, the posterior time courses of glucose appearance are displayed

in Figure 8.3.

Figure 8.2: Posterior parameter distributions of individual subjects using the OMM
and OGTT blood sampling data. The posterior log-normal distributions are given as
median and one-sigma range. The bold and dashed horizontal lines indicate the prior
median and one-sigma range, respectively.

The estimates of the system parameters and glucose appearances using both input

functions generally agree well. The exceptions to that are the results for subjects S1

and S8. In subject S1 the estimates of insulin sensitivity in Figure 8.2 (c) and p2 in
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plot (b) are vastly different between the two input functions. Additionally, two highly

different GA profiles are inferred as displayed in Figure 8.3. In contrast, both models

lead to a very similar output displayed in Figure 8.1. This indicates the existence of

local minima and thus practical identifiability issues caused by the low number of data

points available for estimation. Comparing the two estimated median values for SI in

subject S1, it can be concluded that an SI value of 150 10-4 min-1 per mU/L as esti-

mated using RaPL is unrealistic as it more than ten times larger than the estimated

SI value of the other NGT subjects. The SI value estimated using RaLN thus appears

to be more realistic. This stands in contradiction to the estimated appearance profiles,

where the piecewise-linear function RaPL appears to be physiologically more plausible

because the log-normal input RaLN shows very little appearance at approximately 60

min after meal consumption.

In subject S8, the differences in estimation results, i.e. between parameters SI and p1

and the glucose appearance, are less extreme in comparison to subject S1. In contrast,

prominent differences in the model output in Figure 8.1 are present. As both models

can fit the data very well, practical identifiability issues due to the low number of data

points are the most likely cause for the differences in the estimation results in subject S8.

Figure 8.3: Inferred glucose appearance profiles of the OMM using both input func-
tions RaPL and RaLN . The results are given as the mean and standard deviation
derived from a deterministic sensitivity analysis as described in section 3.4.

In terms of the estimation uncertainty, the log-normal input RaLN generally leads
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to slightly higher posterior uncertainties. This is especially in the case for SI in Figure

8.2 (c) and the glucose appearance in Figure 8.3 in subjects S2 and S8. This can be

explained by the higher number of unknown parameters describing in the model us-

ing RaLN (eight) in comparison to the model using piecewise-linear input RaPL (six).

In comparison to the Nuttall dataset containing much more sampling points, the un-

certainty estimates for SI from the new dataset are increased as demonstrated by the

posterior CVs with a mean and standard deviation of 37.1 ± 32.2 % for RaPL and 46.8

± 29.3 % for RaLN ; for comparison, using the Nuttall dataset yielded 6.9 ± 5.4 % for

RaPL and 8.5 ± 7.5 % for RaLN .

The correlations of the model parameters are displayed in Figure 8.4. In both cases,

the correlations are similar to the correlations obtained with the Nuttall dataset pre-

sented in 5.7.

Figure 8.4: Median posterior parameter correlation matrix of the OMM identified
from OGTT blood sampling data using (a) RaPL and (b) RaLN from the individually
estimated parameter correlation matrices of all seven subjects.

8.3.1.3 Conclusion

Comparing the inference results for the two input functions from the new dataset it

can be concluded that the piecewise-linear function performs marginally better, most

likely due to the reduced number of parameters. It is thus recommended to use the

piecewise-linear function when only a small number of data points are available.

With only five data points, this work uses a very low number of sampling points to

identify the OMM in comparison to the literature. Dalla Man et al. (2005) [123] used

seven sampling points over the same response duration of 120 min. Using the conven-
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tional identification procedure explained in section 4.2, led to a CV of 18 % in insulin

sensitivity estimates. This increased precision can be explained by the higher number

of sampling points and the lower prior uncertainties in parameters p1 and p2. Given

the high uncertainties in the SI estimates obtained in this thesis, the use of a higher

number of sampling points for identification of the OMM is recommended.

8.3.2 Glucose-only models

8.3.2.1 Model fit and basal glucose level

The BMA technique is utilised to avoid the need the select one of the GOMs using

ZLIN , ZLOG or ZPOS , similar to Chapter 6. The BMA results for the model output for

all subjects are displayed in Figure 8.5.

Figure 8.5: Plot of the model output of the GOMs against the CGM data for all
subjects. The results are given as the mean and standard deviation derived from a
deterministic sensitivity analysis as described in section 3.4. The horizontal dash-dot
line gives the inferred baseline glucose level Gb for the OGTT and lunch responses,
respectively and the vertical line gives the time lunch was consumed. For subject S1,
the model output was simulated for the remainder of the time assuming no food intake.
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As mentioned previously, in subject S1 the inpatient monitoring session was aborted

approximately 150 min after OGTT consumption and the lunch response could not be

recorded. This means that the GOMs were identified from reduced a OGTT response

duration, compared to the other subjects, and no identification was carried out for lunch

at all.

The GOMs describe the glucose dynamics for both OGTT and lunch generally well.

A slightly reduced ability to fit the data can be observed in the second half of the

OGTT response from subject S4, where the delayed hypoglycaemia, discussed in the

previous chapter, and subsequent rebound of the glucose levels is described with less

accuracy. Similarly, the oscillations displayed by subject S6 after lunch are not captured

by the model. These model fit issues outline the limitations of the developed GOMs in

describing certain dynamic patterns.

In terms of the inferred baseline glucose level Gb displayed by the horizontal dash-dot

lines in Figure 8.5, it can be noted that the inferred baseline during lunch lies up to

11 % lower, in comparison to the OGTT baseline for almost all subjects. This trend

is generally more pronounced in Pre-DM and T2DM subjects and validates the choice

of adaptable glucose baseline parameter. This decrease in Gb could be explained by

the hypoglycaemic effects of the exercise period towards the end of the lunch response,

mentioned in section 7.3.3.

To analyse the model fit in more detail, the weighted residuals between model output

and CGM data are displayed in Figure 8.6.

Figure 8.6: Residuals between model output and CGM data weighted by the inferred
measurement error. The results are given as the mean and standard deviation. The
shaded grey area indicates the period of exercise at the end of the lunch response.
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The overall mean absolute weighted residuals for all subjects and meals combined

are 0.40 ± 0.32, which indicates a similar model fit as the GOMs in Chapter 6, where

a value of 0.33 ± 0.24 was achieved using the Nuttall dataset. Inspecting the time

profile of weighted residuals displayed in Figure 8.6 reveals oscillations, especially in the

OGTT response. This type of regular pattern in the weighted residuals profile typically

indicates a systematic effect in the data that is not described by the model. Given

that the oscillations are largely contained within the -1 to +1 range could potentially

imply an unmodelled effect in the measurement process. This could mean that assum-

ing a Gaussian measurement error and direct observation of BG levels as described by

expression (8.8) is too simplistic and more complex model of the measurement pro-

cess is required. In fact, several more elaborate models of the CGM data collection

have been proposed in the literature [80, 179, 180]. We, however, argue that this would

make the GOMs unnecessarily complicated as an adequate model fit is already achieved.

The CGM dataset used for model identification included two exercise periods to-

wards the end of the OGTT and lunch response, respectively, where the second exercise

period was carried out with higher intensity. Inspecting the profile of weighted residu-

als during the second exercise period, indicated by the grey area in Figure 8.6, reveals

mostly negative values during and after the exercise which means that the model over-

estimates the actual glucose level. This demonstrates that the model does not fully

capture the glucose dynamics, i.e. immediate reduction of BG levels, caused by the

exercise. The fact that the mean of the weighted residuals is largely above the value

of -1, however, means that the deviation between the model and the data mainly stays

within the range of measurement uncertainty, which does not necessarily warrant the

inclusion of the effects of exercise in the model. In fact, at the end of the response,

the profile of weighted residuals returns to zero meaning that the overall hypoglycaemic

effect of exercise is accounted for, most likely by a decrease in the baseline glucose level

Gb during the lunch response. One possibility to explicitly include the effects of the

exercise in the model could therefore be to introduce a time dependence in the basal

glucose level Gb, allowing short term changes during periods of exercise.
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8.3.2.2 Parameter estimates and correlation

The posterior distributions for SG are displayed in Figure 8.7, corresponding results of

the other system parameters p1 and p2 are provided in Appendix D.5. Comparing the

SG estimates between the OGTT and lunch, it can be seen that the low-CHO meal,

consumed for lunch, leads to higher SG values in almost all cases. This is consistent

with the results from the Nuttall dataset where the SG values from the high protein

meal were significantly higher than the SG values from the high-CHO meal. In terms

of estimation precision for the SG values, the mean and standard deviation of posterior

CVs for all meals is 25.8 ± 6.8 %, which is higher than the 17.7 ± 7.8 % obtained in

the Nuttall dataset. Further examinations into this effect lead to the conclusion that

the increase in the posterior CV for SG can be explained by the inclusion of Gb as an

unknown parameter.

Figure 8.7: Comparison of the results for SG (left y-axis) of the GOM estimated from
the CGM data and SI (right y-axis) of the OMM with RaPL estimated from the blood
sampling data. The results give the median and one-sigma range for the log-normal
posterior distributions. In subject S1, the SI distribution is not shown as it has a
median of 150 10-4 min-1 per mU/L. Furthermore, no SG value during lunch is inferred.
In subject S4, SI could not be estimated with the OMM due to missing data.

The correlation of the model parameters, assessed through the posterior covariance

matrix as described in section 3.3.2.2, is displayed in Figure 8.8. The correlations are

similar to the results using the Nuttall dataset presented in Chapter 6 in Figure 6.11,

especially in terms of the input function parameters. Of interest is the positive corre-

lation between SG and Gb, which further demonstrates the interdependence between

these two parameters.
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Figure 8.8: Median posterior parameter correlation matrix of the GOM identified
from the CGM data from the individually estimated parameter correlation matrices of
both meals all subjects.

8.3.2.3 Model validation

Identical to Chapter 6, it is expected that the parameter SG of the GOMs in expression

(8.5) correlates with the insulin sensitivity parameter SI estimates from the OMM us-

ing the piecewise-linear input. The Pearson correlation between SI and SG estimated

during the OGTT response is 0.92 with p < 0.005, demonstrating the significance of the

expected correlation. Examining the results for SG during the OGTT on an individual

level in Figure 8.7, it can be seen that the trend for higher SG values in subjects S1

and S2 and lower values in subjects S3, S5, S6 matches the trend of the SI values.

In subjects S7 and S8, however, the estimated SG values are lower than in all other

subjects which is not the case in the SI values. Given that these two subjects have low

beta-cell function could imply that the GOMs in their current form are not capable of

correctly estimating insulin sensitivity in T2DM subjects with low beta-cell function.

The inferred rates of GA by the GOMs are displayed in Figure 8.9. The GA in-

ferred by the GOM and OMM generally follow comparable shapes. Any differences in

the profiles can be explained by the fact that the models use different input functions

and are identified with very different datasets, i.e. CGM data only for the GOMs and

glucose and insulin blood sampling data for the OMM. The general similarity between

GA profiles nevertheless demonstrates the GOM’s ability to estimate the meal-related

appearance of glucose during an OGTT response recorded with CGM. During the lunch

response, the inferred appearance rates show a slower rise as well as a prolonged ab-

sorption towards the end of the response, which is consistent the high fat/protein and
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low CHO composition of the lunch meal. This demonstrates the utility of the GOMs

for assessing differences in GA with respect to meal composition. The exception is the

inferred GA for lunch in subject S6, where no appearance is estimated. The absence of

any GA is physiologically implausible and can be explained by the fact that the entire

lunch glucose response lies below the estimated basal glucose level Gb as shown in Fig-

ure 8.5. In comparison to the other subjects, this glycaemic behaviour is unusual and

makes it difficult for the model to detect the presence of any glucose appearance.

Figure 8.9: Comparison of the glucose appearance (GA) profiles inferred by the OMM
(red) and the GOMs (blue) for all subjects. The results are given as the mean and
standard deviation derived from a deterministic sensitivity analysis as described in
section 3.4. The vertical line indicates the time lunch was consumed.



Chapter 8. Model-based analysis of experimental data 158

8.4 Summary and conclusions

This chapter applied the modelling techniques developed in this thesis to data from

subjects with varying glucose tolerance. With regard to the OMM, it has been shown

that the identification procedure using the VB method reaches its limitations when a

low number of data points is available for estimation, as indicated by the existence of

local minima and reduced estimation precision of insulin sensitivity. The new input

function performs marginally worse in comparison to the conventional piecewise-linear

input when only a few data points are utilised.

On the subject of the GOM performance, it has been shown that the developed

models can be identified from CGM data and generally describe the observed glucose

dynamics well. It has also been demonstrated that the inferred GA profiles are similar

to the OMM and that information on insulin sensitivity can be extracted on an indi-

vidual level.

The preliminary nature of the underlying experimental study, especially the low

number of subjects, does not allow any conclusions regarding the applicability of the

GOMs in clinical practice and the treatment of Pre-DM and T2DM. The results nev-

ertheless demonstrate the usefulness of CGM as a means of glucose data collection for

model identification and warrant the acquisition of similar data on a larger number of

subjects.



Chapter 9

Conclusions and future work

The main contribution of this work is the minimal-type models for the description of

postprandial glucose profiles that can be identified from glucose data only and pro-

vide information on insulin sensitivity and meal-related glucose appearance (GA). This

means that it is possible to assess the postprandial glucose metabolism with minimal

data collection efforts, which could support healthcare professionals in designing effec-

tive treatment strategies for Pre-DM and T2DM. The main aim of this thesis has thus

been fulfilled.

The basis for the model development was established by two datasets. The first

dataset from voluteers with normal glucose tolerance (NGT), referred to as the Nuttall

dataset and described in Chapter 4, was made available for the use of this thesis and

played a crucial role in the initial model development. The second dataset, described

in Chapter 7, was collected during an experimental study that was fully designed and

implemented in the context of this PhD project. This provided the opportunity to

complement the Nuttall dataset, mainly through the inclusion of Pre-DM and T2DM

subjects and through the use of continuous glucose monitoring (CGM) for glucose data

collection. The cohort contained a comparatively small number of subjects giving the

conducted study a preliminary nature. This nevertheless provided the opportunity to

introduce two novel features to the data collection process.

The first novelty lies in the fact that glucose data were collected both in the highly

controlled conditions of an inpatient monitoring session as well as during normal life

conditions. Comparing BG levels between these two scenarios revealed increased lev-

els during the inpatient monitoring session in the majority of subjects. This difference

159
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demands caution when extrapolating results obtained under controlled conditions to ev-

eryday life and highlights the importance of collecting data under both circumstances.

The second novelty lies in the combination of CGM and blood sampling data collection

during an oral glucose tolerance test (OGTT). This offered the unique opportunity to

validate the modelling results from the CGM data on the results using classical glucose

and insulin data from blood sampling. The CGM technique additionally allowed the

detection of relevant and interesting dynamical features in the OGTT glucose response

beyond the conventional observation duration of 120 min. Specifically, it was observed

that delayed hypoglycaemia is common in subjects with reduced insulin sensitivity.

Overall, the results of the experimental study warrant more extensive data collection

from additional subjects to reinforce the preliminary findings.

Variational Bayesian (VB) inference was used for all parameter estimation tasks in

this work. The VB method uses a deterministic and efficient algorithm to approximate

the true posterior distribution over unknown parameters, while also providing a lower

bound on the model evidence. As the theoretical foundation of this method has been

discussed in detail previously [93, 98, 103], this work focussed on describing the practical

aspects of applying the VB method in metabolic modelling, thus providing a resource

for other researchers using this method to refer back to. In this context, this thesis also

developed and implemented a method for the use of existing information to define and

interpret the probability density function of the measurement noise uncertainty, which

has subsequently been accepted by the development team as an official part of the VB

toolbox [104] (Chapter 3).

In order to build a foundation for the development of glucose-only models, the well-

established oral minimal model (OMM) was chosen to be identified from the glucose and

insulin data. This led to several novel adaptations to the formulation and identification

procedure of the OMM, which has been the subject of Chapters 4 and 5. In summary

these adaptations are as follows.

• The VB method was used to estimate the parameters in the OMM. This technique

allows the probabilistic treatment of the unknown parameters and thus quantifi-

cation of their uncertainty as well as the inclusion of prior knowledge into the

parameter estimation procedure.

• A structural identifiability analysis using the Taylor series method and symbolic
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computation revealed that the parameter representing glucose effectiveness is, con-

trary to previous results [71], structurally globally identifiable. It has, however,

also been shown this parameter is difficult to estimate with acceptable precision

in practice. This led to the proposal of a suitable prior distribution that pro-

vides a trade-off between considering the natural population variability in glucose

effectiveness and an acceptable estimation accuracy of the remaining parameters.

• The formulation of the OMM was adapted and a procedure for the identifica-

tion from non-fasting conditions was developed and implemented. This makes

it possible to identify the model from consecutive meal responses allowing the

examination of changes to insulin sensitivity and GA throughout the day.

• A novel input function representing the meal-related glucose appearance was in-

troduced. In comparison to the conventional piecewise-linear description, the

proposed input consisting of two log-normally shaped functions is fully differen-

tiable and completely independent of the duration of the considered response.

This greatly facilitates the application of the OMM to datasets with a varying

duration between meals. It was furthermore shown that the new input function

leads to an improvement in model fit during the first 30 min of the response, which

indicated a more realistic estimation of GA in that period of the response.

A comparison of the inference results with corresponding studies from the literature

revealed that the proposed alterations lead to similar results in terms of the model’s

ability to describe the data and precision of the estimated parameters. This literature-

based approach to validation is limited by the fact that it can at most establish the

equivalence to the conventional oral minimal modelling approach. Demonstrating that

the modifications noted above lead to truly superior results would require additional

data from the use of traced glucose and/or clamp experiments.

A weakness of the conventional OMM identification approach is that the commonly

used software package SAAM II [122] is only commercially available. In contrast to

that, the VB toolbox used in this research is implemented as a freely available library

of MATLAB functions. This made it possible to publish the necessary code allowing for

independent researchers the opportunity to identify the OMM without in-depth knowl-

edge on model identification. Such efforts are aided by the explanations in Chapter 4,

which describe the identification procedure of the OMM in detail. As mentioned previ-
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ously, the publishing of the code follows recent efforts to facilitate the identification of

the IVGTT minimal model [137]. Furthermore, it increases the impact of this research

and promote the use of the VB method in the field of metabolic modelling.

The development of glucose-only models (GOM), described in Chapter 6, used the

oral minimal model and Nuttall dataset as a foundation to formulate three different

model candidates. As neither of the candidates emerged as clearly superior, a model

fusion technique within the VB framework known as Bayesian model averaging was

utilised to combine the results of the three candidates according to the model evidence.

This gave the modelling framework the necessary flexibility for the application to the

new dataset described in Chapter 7. The goal of the glucose-only modelling task was to

establish the physiological interpretability of the model parameters by assessing their

results in comparison to the associated OMM results obtained from the same dataset.

In this context, the combined results of the GOMs have shown that

• In comparison to the conventional OMM, the GOMs show an improved model

fit, especially during the first 30 min of the response, as indicated by decreased

weighted residuals between model output and data.

• The GOMs can be used to infer information on insulin sensitivity as they contain

a parameter highly correlated to the insulin sensitivity inferred from the OMM.

Especially in a meal with high carbohydrate content, a correlation coefficient of

0.8, outperforming other surrogate indices of insulin sensitivity, has been achieved.

• The GOM-inferred GA profiles are similar to the GA profiles inferred with the

OMM, with evidence of an improved estimation in the first 30 min of the response.

This allows the comparison and interpretation of trends using the GOM-inferred

appearance profiles with respect to meal composition.

Similar results from the GOMs were obtained utilising CGM profiles from NGT,

Pre-DM and T2DM subjects (Chapter 8) from our bespoke dataset.

For the formulation of the GOM candidates, we used physiological principles from

models of insulin secretion, as well as results from examining the dynamical glucose-

insulin relationship. The latter has proven to provide useful information during model

development and has the potential for future improvements. In particular, one aspect

of the glucose-insulin relationship, exemplified in Figure 9.1, is not yet included in the
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model: after the initial rise, glucose levels decay much faster to their respective baseline

than insulin levels. Incorporating this particular behaviour into the GOMs could offer

an opportunity for further improvements to the model.

Figure 9.1: Normalised glucose and insulin profiles (with respect to the peak value)
above baseline for the (a) STAND and (b) HCHO diet in the Nuttall dataset. The
profiles are given as the mean and standard deviation.

Overall, the results of the glucose-only modelling approach are promising and the

potential for application purely based on glucose data is large. This is mainly rooted

in the already existing glucose data collection in clinical practice and the fact that the

GOMs overcome the previously mentioned disadvantages of current insulin measure-

ment techniques.

In order to build upon the modelling work carried out in Chapter 6, a larger dataset

similar to Nuttall’s data collected on Pre-DM and T2DM subjects would be required.

This type of data has already been published [135, 181–183], meaning that it might be

more feasible to contact the respective authors instead of designing and conduction sepa-

rate experimental studies for that purpose. To build on this, additional CGM data from

Pre-DM and T2DM subjects would also be required, as mentioned earlier. To continue

the modelling work initially, it would be possible to use the data already collected during

the study described in Chapter 7, that have not been analysed yet. Here, a minor prob-

lem lies in the fact that it is mainly free-living data, meaning that the information on

food intake is less reliable. As already mentioned in the context of validating the OMM

adaptations, additional data from the use of traced glucose and/or clamp experiments

would also be required to further validate the GOMs, e.g. in terms of their ability to

estimate insulin sensitivity, before their applicability in clinical practice can be assessed.
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With the availability of additional data, especially from single subjects, future work

could focus on revisiting the mixed-effects modelling approach for the parameter esti-

mation procedure, explained in section 3.3. However, instead of incorporating data from

multiple subjects during parameter estimation, data collected from multiple responses

on the same subject could be combined. Such an approach could potentially improve

upon the proposed procedure for estimating parameters from multiple, consecutive re-

sponses on the same day using the OMM and could also be applied to the description

of ambulatory CGM profiles using the GOMs.

Finally, the possible applications of the developed GOMs extend beyond Pre-DM

and T2DM to other diabetes types. In particular for gestational diabetes mellitus, i.e.

diabetes occurring during pregnancy, which is characterised by a rapid deterioration of

glycaemic control, GOMs could be utilised to accurately monitor disease progression. In

fact, two projects are currently being undertaken within our research group to continue

the work on GOMs in the context of gestational diabetes mellitus.
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Appendix A

Mathematical derivations

A.1 Derivation of the expression for free energy

In section 3.3.2.1, expression (3.10) defines the Kullback-Leibler divergence between the

approximated distribution fq and the true posterior fθ|y,M as follows

DKL(fq ‖ fθ|y,M ) =

∫
fq(θ) log

fq(θ)

fθ|y,M (θ|y,M)
dθ

= E
[
log

fq(θ)

fθ|y,M (θ|y,M)

]
fq

.

Furthermore the true posterior is defined by expression (3.8) as follows

fθ|y,M (θ|y,M) =
L(y|θ,M)fθ|M (θ|M)

P (y|M)
.

Substituting this expression for the true posterior in the expression for the Kullback-

Leibler divergence leads to

DKL(fq ‖ fθ|y,M ) = E
[
log

fq(θ)P (y|M)

L(y|θ,M)fθ|M (θ|M)

]
fq

.

Subsequently expanding the logarithm gives

DKL(fq ‖ fθ|y,M ) = E
[
log fq(θ) + logP (y|M)− logL(y|θ,M)− log fθ|M (θ|M)

]
fq
.
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Since logP (y|M) is independent of θ, its expected value is itself, i.e.

E [logP (y|M)]fq =

∫
logP (y|M)fq(θ)dθ = logP (y|M),

meaning that the expression for the Kullback-Leibler divergence can be simplified as

follows

DKL(fq ‖ fθ|y,M ) = E
[
log fq(θ)− logL(y|θ,M)− log fθ|M (θ|M)

]
fq

+ logP (y|M).

Defining the the free energy F as

F = E
[
logL(y|θ,M) + log fθ|M (θ|M)− log fq(θ)

]
fq
.

leads to expression (3.11) after reformulation

F = logP (y|M)−DKL(fq ‖ fθ|y,M ).

A.2 Derivation of the AUC of the piecewise-linear function

The piecewise-linear function RaPL is given as

RaPL(t) =


ki−1 +

ki − ki−1
ti − ti−1

(t− ti−1) for ti−1 ≤ t ≤ ti i = 1 . . . 7,

k7 exp(−α(t− t7)) for t > t7.

An example plot of this function is given in the following Figure.

Figure A.1: Example of the function RaPL(t).

The area Ai under any linear section is formed by a trapezoid and can be calculated
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as follows
Ai = (t− ti−1)ki +

1

2
(t− ti−1)(ki−1 − ki)

= (t− ti−1)ki−1 +
1

2
(t− ti−1)(ki − ki−1)

= (t− ti−1)
[
ki−1 +

1

2
(ki − ki−1)

]
=

1

2
(ti − ti−1)(ki + ki−1).

The total AUC A of RaPL(t) can then be calculated as

A =

∫ ∞
0

RaPL(t)dt =
7∑
i=1

Ai +

∫ ∞
t7

k7 exp(−α(t− t7))dt

=
1

2

7∑
i=1

(ti − ti−1)(ki + ki−1) +
k7
α
.

A.3 Transformation of PDF in Dalla Man et al. (2004)

In the publication by Dalla Man et al. (2004) [72], the authors propose to model the

square root of a parameter of interest as normally distributed. This can be expressed

as taking the normally distributed parameter p with density fp defined with mean µ

and standard deviation σ and mapping it to the parameter s with the function s = p2.

Applying theorem (3.21), the density fs over s is given by

fs(s|µ, σ) =
1

2
√

2πsσ
exp

(
−(µ+

√
s)2

2σ2

)[
1 + exp

(
2µ
√
s

σ2

)]
for s > 0.

Using symbolic calculation, it can be shown that the density fs has the following mean

and variance
E[s]fs = µ2 + σ2,

Var[s]fs = 2(2µ2σ2 + σ4).
(A.1)

In Dalla Man et al. (2004) [72], the parameter of interest is p2 and its square root follows

a normal distribution with a mean of 0.11 min-1/2 and CV of 10 %. Using expressions

(A.1), it can be calculated the actual distribution over p2, has a mean of 0.012 min-1

and a CV of around 20 %.
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A.4 Derivation of log-normally shaped input function com-

ponent

The log-normal distribution is generally defined as follows [108]

fx(t|µ, σ) =
1

t
√

2πσ
exp

(
−(log t− µ)2

2σ2

)
for t > 0.

This parametrisation is based on the associated normal distribution, i.e. log t ∼ N (µ, σ2).

In order to have a single parameter T defining the peak position of the profile (defined

by the mode of the PDF) and another parameter W governing the general width, the

following substitutions are made

µ = log T + σ2,

σ2 =
W

2
.

This leads to the following parametrisation of the input function component

fLN (t, T,W ) =
1

t
√
πW

exp

−
[
log

t

T
− W

2

]2
W

 .
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Structural identifiability analysis

B.1 Implementation of Taylor series approach in Mathe-

matica

The details of the structural identifiability analysis using the Taylor series method and

symbolic computation can be found below. For that Mathematica code will be pre-

sented.

The implemented Mathematica code will be exemplified on the model presented in

section 3.2
dx(t)

dt
= −(p1

2 + p2)x(t), x(0) = x0, y(t) = x(t).

First, the model equations, initial conditions and output are defined by

In[1]:= (* Model equations *)

x'[t] = -(p1^2 + p2)*x[t];

(* Initial condition *)

x[0] = x0;

(* Observation *)

y[t] = x[t];

Next, the number of Taylor coefficients Nt to be calculated, the time t0 at which to

expand the Taylor series around, the vector of unknown substitution parameters subst

and the vector sol of variables to solve for are defined

In[2]:= Nt = 2;

t0 = 0;

subst = {p1 → p1b, p2 → p2b};

sol = {p1b, p2b}
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Lastly the following code calculating the Taylor coefficients, creating and solving the

system of equations is executed

In[3]:= (* Calculates the Taylor coefficients *)

Cof = {{y[0]}};

For[i = 2, i <= Nt, i++,

Cof = Append[Cof, D[y[t], t, i-1] /. t → t0]];

(* Constructs the system of equations *)

Eqns = {Cof[[1]] == (Cof[[1]] /. subst)};

For[i = 2, i <= Nt, i++,

Eqns = Append[Eqns, Cof[[i]] == (Cof[[i]] /. subst)]];

(* Solves the system of equations *)

Solve[Eqns, sol]

This yields the result

Out[3]= p2b → p12-p1b2+p2,

showing that the model parameters are not identifiable.

In order to determine the number of Taylor coefficients, the value of Nt is increased

until all parameters have a unique solution, i.e. are structurally globally identifiable,

or the system of equations become intractable for the symbolic computation, i.e. the

computation no longer completes.

B.2 Oral minimal model

B.2.1 Formulation by Dalla Man et al. (2002)

Dalla Man et al. (2002) [71] formulate the OMM with the following equations described

in section 4.2.

dG(t)

dt
= −G(t)X(t)− p1[G(t)−Gb] +

RaPL(t)

V
, G(0) = Gb,

dX(t)

dt
= −p2X(t) + p3[I(t)− Ib], X(0) = 0,

RaPL(t) =


ki−1 +

ki − ki−1
ti − ti−1

(t− ti−1) for ti−1 ≤ t ≤ ti i = 1 . . . n,

0 for t > tn.

The insulin sensitivity SI is given by p3/p2. The model considers the insulin concen-

tration I(t) to be a known input with I(0) = Ib. To assess the identifiability using the

189



Appendix B. Structural identifiability analysis 190

Taylor Series approach, the system is initially expanded around t0 = 0. The means that

RaPL takes the following form

RaPL(t) = k0 +
k1 − k0
t1 − t0

(t− t0) =
k1
t1
t. (B.1)

This assumes that k0 = 0 based on fasting state of the subjects.

The model, substitutions and variables to solve for are defined as follows

In[4]:= (* Model equations *)

RaPL[t] = t*(k1/t1);

G'[t] = -G[t]*X[t] - p1*(G[t] - Gb) + RaPL[t]/V;

X'[t] = -p2*X[t] + p3*(Ii[t] - Ib);

(* Initial conditions *)

G[0] = Gb; X[0] = 0; Ii[0] = Ib;

(* Observation equation *)

y[t] = G[t];

(* Substitutions and unknown parameters to solve for *)

subst = {p1 → p1b, p2 → p2b, p3 → p3b, k1 → k1b V → Vb};

sol = {p1b, p2b, p3b, k1b, Vb};

Calculating six Taylor coefficients, i.e. Nt=6, as in Dalla Man et al. (2002) [71], the

following result using the code in section B.1 is obtained

Out[4]= (* Solution 1 *)

p1b → p1, p2b → p2, p3b → p3, k1b → k1Vb

V
(* Solution 2 *)

p1b → (6k13p1Ii′[0]+Gb3p2p32t13V3Ii′[0]
3
+Gb2k1p3t12V2(-p22Ii′[0]

2

+2p2Ii′[0]Ii′′[0]-Ii′′[0]
2
+p1Ii′[0](p2Ii′[0]+Ii′′[0])+Ii′[0]Ii(3)[0])

+Gbk12t1V(6p3Ii′[0]
2
+p1(p1Ii′′[0]+Ii(3)[0]))) / (6k13Ii′[0]

+Gb3p32t13V3Ii′[0]
3
+Gb2k1p3t12V2Ii′[0](p1Ii′[0]-p2Ii′[0]+2Ii′′[0])

+Gbk12t1V(p1Ii′′[0]+Ii(3)[0])),

p2b → (-6k12Ii′[0]
2
+Gb2p1p3t12V2Ii′[0]

3
+Gbk1t1V(p12Ii′[0]

2

-p2Ii′[0]Ii′′[0]+Ii′′[0]
2
+p1Ii′[0](-p2Ii′[0]+Ii′′[0])-Ii′[0]Ii(3)[0])) ...

/ Gbt1V Ii′[0](Gbp3t1VIi′[0]
2
+k1(p1Ii′[0]-p2Ii′[0]+Ii′′[0])),

p3b → (Gbp3t1V(Gbp3t1VIi′[0]
2
+k1(p1Ii′[0]-p2 Ii′[0]+Ii′′[0]))

2
) /

(Ii′[0](6k13Ii′[0]+Gb3p32t13V3Ii′[0]
3
+Gb2k1p3t12V2Ii′[0](p1 Ii′[0]

-p2Ii′[0]+2Ii′′[0])+Gbk12t1V(p1Ii′′[0]+Ii(3)[0]))),

k1b → k1Vb

V

This confirms the results from Dalla Man et al. (2002) [71], namely that only k1/V is

identifiable, and that there are in fact two possible solutions for parameters p1, p2 and

190



Appendix B. Structural identifiability analysis 191

p3, making them only locally identifiable. As mentioned in Chapter 4 the authors then

decide to fix p1 in order to make p2 and p2 globally identifiable.

If one additional Taylor coefficient is included, i.e. Nt=7, the following result using

the code in section B.1 is obtained

Out[5]= p1b → p1, p2b → p2, p3b → p3, k1b → k1Vb

V

This result demonstrates the global identifiability of p1, p2 and p3 using the Taylor series

approach without the need to assume the knowledge of either one of the parameters. It

disproves the statements made by Dalla Man et al. (2002) [71] and confirms the results

from Saccomani et al. [131].

To prove the identifiability of the remaining ki, the model output needs to be ex-

panded around the other breakpoints ti of the input function. This is the case because

the input function takes on a different functional form at each breakpoint. Dalla Man

et al. (2002) [71] use the global identifiability of p1, p2 and p3 (achieved through fixing

p1) to prove the identifiability of the remaining ki.

B.2.2 Formulation presented in this work

In Chapter 4, the OMM is formulated as follows

dG(t)

dt
= −G(t)X(t)− p1[G(t)−Gb] +

RaPL(t) +Rap(t)

V
, G(0) = G0,

dX(t)

dt
= −p2(X(t)− SI [I(t)− Ib]), X(0) = X0,

RaPL(t) =


ki−1 +

ki − ki−1
ti − ti−1

(t− ti−1) for ti−1 ≤ t ≤ ti i = 1 . . . 7,

k7 exp(−α(t− t7)) for t > t7,

Rap(t) = R0 exp(−αt).

The model, substitutions and variables to solve for are defined as follows

In[6]:= (* Model equations *)

RaPL[t] = t*(k1/t1);

Rap[t] = R0*Exp[-α t]

G'[t] = -G[t]*X[t] - p1*(G[t] - Gb) + (RaPL[t]+Rap[t])/V;

X'[t] = -p2*(X[t] - SI*(Ii[t] - Ib));

(* Initial conditions *)

G[0] = G0; X[0] = X0; Ii[0] = I0;
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(* Observation *)

y[t] = G[t];

(* Substitutions and unknown parameters to solve for *)

subst = {p1 → p1b, p2 → p2b, p3 → p3b, k1 → k1b};

sol = {p1b, p2b, p3b, k1b};

Calculating six Taylor coefficients, i.e. Nt=6 the following result using the code in section

B.1 is obtained

Out[6]= p1b → p1, p2b → p2, SIb → SI, k1b → k1

demonstrating the identifiability of of all parameters. It should be pointed out that V

is assumed to be known before the analysis. This is necessary because the initial level

of I(t), i.e. I0, could be different from the basal state Ib and has thus to be defined by a

separate parameter. This, in turn, makes the second and third Taylor coefficients more

complex and the symbolic computation no longer completes. The results confirm the

global identifiability of p1, p2, SI and k1, assuming the knowledge of V . It should be

noted, that only six Taylor coefficients were required to obtain this result, most likely

through the assumption that V is known prior to the analysis.

Using these results, i.e. p1, p2, SI and k1 being identifiable, the identifiability of the

remaining ki can be analysed by expanding the Taylor series around t0 = ti. For the

case of t0 = t1 the function RaPL takes the following form

RaPL(t) = k1 +
k2 − k1
t2 − t1

(t− t1).

The function RaPL, substitutions and unknown parameters to solve for are defined as

follows

In[7]:= RaPL[t] = k1 + (k2 - k1)/(t2 - t1)*(t - t1);

subst = {k2 → k2b};

sol = {k2b};

Using three Taylor coefficients, i.e. Nt=3 and defining t0=t1, the following results are

obtained

Out[7]= k2b → k2

proving the identifiability of k2. Identical results are obtained for the remaining ki,

therefore demonstrating the global identifiability of all ki.
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B.2.3 Formulation with RaR

B.2.3.1 Taylor series method

The OMM in combination with the input function containing two Rayleigh components

RaR is formulated as follows

dG(t)

dt
= −G(t)X(t)− p1[G(t)−Gb] +

RaPL(t) +Rap(t)

V
, G(0) = G0,

dX(t)

dt
= −p2(X(t)− SI [I(t)− Ib]), X(0) = X0,

RaR(t) = (1−RH)
t

T 2
1

exp

(
− t2

2T 2
1

)
+RH

t

T 2
2

exp

(
− t2

2T 2
2

)
,

Rap(t) = R0 exp(−αt).

For simplicity, it is assumed that the AUC under the input function is one and the

known persisting absorption is modelled with a monoexponential decay. The model,

substitutions and variables to solve for are defined as follows

In[8]:= (* Model equations *)

RaR[t] = (1 - RH)*t^2/T1^2*Exp[-t^2/(2*T1^2)]

+ RH*t^2/T2^2*Exp[-t^2/(2*T2^2)];

Rap[t] = R0*Exp[-α*t]

G'[t] = -G[t]*X[t] - p1*(G[t] - Gb) + (RaR[t]+Rap[t])/V;

X'[t] = -p2*(X[t] + SI*(Ii[t] - Ib));

(* Initial conditions *)

G[0] = G0; X[0] = X0; Ii[0] = Ib;

(* Observation *)

y[t] = G[t];

(* Substitutions and unknown parameters to solve for *)

subst = {p1 → p1b, T1 → T1b, T2 → T2b, RH → RHb}

sol = {p1b, T1b, T2b, RHb}

This assumes that I(0) = Ib and that R0, α, and V are known. Using eight Taylor

coefficients, the following results using the code in section B.1 are obtained

Out[8]= (* Solution 1 *)

p1b → p1, p2b → p2, SIb → SI,

T1b → T1, T2b → T2, RHb → RH,

(* Solution 2 *)

p1b → p1, p2b → p2, SIb → SI,

T1b → T1, T2b → -T2, RHb → RH,

(* Solution 3 *)

193



Appendix B. Structural identifiability analysis 194

p1b → p1, p2b → p2, SIb → SI,

T1b → T2, T2b → T1, RHb → 1-RH,

(* Solution 4 *)

p1b → p1, p2b → p2, SIb → SI,

T1b → T2, T2b → -T1, RHb → 1-RH,

(* Solution 5 *)

p1b → p1, p2b → p2, SIb → SI,

T1b → -T1, T2b → T2, RHb → RH,

(* Solution 6 *)

p1b → p1, p2b → p2, SIb → SI,

T1b → -T1, T2b → -T2, RHb → RH,

(* Solution 7 *)

p1b → p1, p2b → p2, SIb → SI,

T1b → -T2, T2b → T1, RHb → 1-RH,

(* Solution 8 *)

p1b → p1, p2b → p2, SIb → SI,

T1b → -T2, T2b → -T1, RHb → 1-RH

The same results are obtained for nine and ten Taylor series coefficients. These results

indicate the global identifiability of p1, p2 and SI and the local identifiability of T1,

T2 and RH . The solutions with respect to the locally identifiable parameters can be

grouped as follows, with the solution number given at the bottom of the graph

T1

T1 T2 −T1 −T2

Rh Rh Rh 1−Rh Rh Rh Rh 1−Rh

T2 T2 T2 T2

T2 −T2 T1 −T1 T2 −T2 T1 −T1

(1) (2) (3) (4) (5) (6) (7) (8)

Restricting parameters T1 and T2 to positive values reduces the solutions to the following

two combinations
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T1

T1 T2

T2 → T2 T2 → T1

Rh → Rh Rh → 1−Rh

B.2.3.2 ORC method

The ORC method used in this thesis is implemented in the MATLAB toolbox STRIKE-

GOLDD v2.2 (https://sites.google.com/site/strikegolddtoolbox/). Here the model is

defined as follows

% States

syms G X

x = [G; X];

% Inputs

syms I t;

u = [I; t];

% Unknown parameters

syms p1 p2 SI T1 T2 Rh

p =[p1; p2; SI; T1; T2; Rh];

% Output/observation

h = G;

% Initial Conditions

syms G0 X0

ics = [G0; X0];

known_ics = [1,1];

% Model equations

Ra_R = (1-Rh)*t/T1^2*exp(-t^2/T1^2) + ...

Rh*t/T2^2*exp(-t^2/T2^2);

f = [-X*G - p1*G + Ra_R + exp(-t);

-p2*(X-SI*I)];

Here, we assume time to be a known input similar to the insulin concentration. As the

toolbox does not allow the definition of known parameters, we had to assume specific

values for known parameters, i.e. Ib = 0, Gb = 0, V = 1, R0 = 1, α = 1 and A = 1.

The result is that all parameters are structurally locally identifiable, as demonstrated

by the following output:

------------------------

>>> RESULTS SUMMARY:
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------------------------

>>> The model is Fully Input-State-Parameter Observable (FISPO):

All its states are observable.

All its parameters are locally structurally identifiable.

Total execution time: 1.972068e+00

B.2.4 Formulation with RaRLN and RaLN

To apply the ORC method to the OMM with the input functions RaRLN and RaLN , a

very similar code as presented in the previous section is used. The differences are the

definitions the unknown parameters and input functions. For RaRLN we have

% Unknown parameters

syms p1 p2 SI T1 T2 W2 Rh

p =[p1; p2; SI; T1; T2; W2; Rh];

% Model equations

Ra_RLN = (1-Rh)*t/T1^2*exp(-t^2/T1^2) + ...

Rh/(t*sqrt(pi*W2))*exp(-(log(t/T2) - W2/2)^2/W2);

f = [-X*G - p1*G + Ra_RLN + exp(-t);

-p2*(X-SI*I)];

with the following output:

------------------------

>>> RESULTS SUMMARY:

------------------------

>>> The model is Fully Input-State-Parameter Observable (FISPO):

All its states are observable.

All its parameters are locally structurally identifiable.

Total execution time: 1.501507e+01

For RaLN we have

% Unknown parameters

syms p1 p2 SI T1 T2 W2 W2 Rh

p =[p1; p2; SI; T1; T2; W2; W2; Rh];

% Model equations

Ra_LN = (1-Rh)/(t*sqrt(pi*W1))*exp(-(log(t/T1) - W1/2)^2/W1) + ...

Rh/(t*sqrt(pi*W2))*exp(-(log(t/T2) - W2/2)^2/W2);

f = [-X*G - p1*G + Ra_LN + exp(-t);

-p2*(X-SI*I)];

with the following output:

------------------------

>>> RESULTS SUMMARY:
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------------------------

>>> The model is Fully Input-State-Parameter Observable (FISPO):

All its states are observable.

All its parameters are locally structurally identifiable.

Total execution time: 7.845058e+01

confirming the local structural identifiability of all parameters in both cases.

B.3 Glucose-only models

B.3.1 ORC method

As before, the MATLAB toolbox STRIKE-GOLDD v2.2 is used. Here the GOM using

ZLIN is defined as follows

% States

syms G X

x = [G; X];

% Inputs

syms t;

u = [t];

% Unknown parameters

syms p1 p2 SG T1 W1 T2 W2 Rh

p =[p1; p2; SG; T1; W1; T2; W2; Rh];

% Output/observation

h = G;

% Initial Conditions

syms G0 X0

ics = [G0; X0];

known_ics = [1,1];

% Model equations

Ra_LN = (1-Rh)/(t*sqrt(pi*W1))*exp(-(log(t/T1) - W1/2)^2/W1) + ...

Rh/(t*sqrt(pi*W2))*exp(-(log(t/T2) - W2/2)^2/W2);

f = [-X*G - p1*G + Ra_LN + exp(-t);

-p2*(X-SG*G)];

As the toolbox does not allow the definition of known parameters, we had to assume

specific values for known parameters, i.e. Gb = 0, V = 1, R0 = 1, α = 1 and A = 1.

The result is that all parameters are structurally locally identifiable, as demonstrated

by the following output:

------------------------

>>> RESULTS SUMMARY:
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------------------------

>>> The model is Fully Input-State-Parameter Observable (FISPO):

All its states are observable.

All its parameters are locally structurally identifiable.

Total execution time: 3.822747e+02

In the case of the GOM with ZLOG the same code is used, except for defining the model

as follows:

% Model equations

Ra_LN = (1-Rh)/(t*sqrt(pi*W1))*exp(-(log(t/T1) - W1/2)^2/W1) + ...

Rh/(t*sqrt(pi*W2))*exp(-(log(t/T2) - W2/2)^2/W2);

f = [-X*G - p1*(G) + Ra_LN + exp(-t);

-p2*(X-SG*log((exp(G)+1)/2))];

with the following result

------------------------

>>> RESULTS SUMMARY:

------------------------

>>> The model is Fully Input-State-Parameter Observable (FISPO):

All its states are observable.

All its parameters are locally structurally identifiable.

Total execution time: 9.219956e+03

demonstrating the structural local identifiability of all parameters In the case of the

GOM with ZPOS the model is defined as follows:

% Model equations

Ra_LN = (1-Rh)/(t*sqrt(pi*W1))*exp(-(log(t/T1) - W1/2)^2/W1) + ...

Rh/(t*sqrt(pi*W2))*exp(-(log(t/T2) - W2/2)^2/W2);

f = [-X*G - p1*(G) + Ra_LN + exp(-t);

-p2*(X-SG*G/(1+exp(-2*G)))];

with the following result

------------------------

>>> RESULTS SUMMARY:

------------------------

>>> The model is Fully Input-State-Parameter Observable (FISPO):

All its states are observable.

All its parameters are locally structurally identifiable.

Total execution time: 6.725713e+03

demonstrating the structural local identifiability of all parameters
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B.3.2 Taylor series method

For the identifiability analysis using the Taylor series method, the general glucose-only

models are formulated as follows

dG(t)

dt
= −G(t)X(t)− p1[G(t)−Gb] +

Ra(t) +Rap(t)

V
, G(0) = G0,

dX(t)

dt
= −p2(X(t)− SGZ(t, Gb)), X(0) = X0,

Ra(t) = k · t,

Rap(t) = R0 exp(−αt),

where the function Z can take one of the following forms

ZLIN = G(t)−Gb,

ZLOG = log

[
exp(G(t)−Gb) + β

β + 1

]
,

ZPOS =
G(t)−Gb

1 + exp[−γ(G(t)−Gb)]
.

The model equations are defined as follows

In[9]:= (* Model equations *)

Ra[t] = k*t;

Rap[t] = R0*Exp[-α t]

G'[t] = -G[t]*X[t] - p1*(G[t] - Gb) + (Ra[t] + Rap[t])/V;

X'[t] = -p2*(X[t] - SG*Z);

(* Initial conditions *)

G[0] = G0; X[0] = X0;

(* Observation *)

y[t] = G[t];

with the formulations of Z

In[10]:= ZLIN = G[t] - Gb;

ZLOG = Log[(Exp[G[t] - Gb] + β)/(β+ 1)];

ZPOS = (G[t] - Gb)/(1 + Exp[-γ*(G[t] - Gb)]);

For the case of ZLIN , the following substitutions and unknown parameters to solve for

are defined

In[11]:= subst = {p1 → p1b, p2 → p2b, SG → SGb, k → kb};

sol = {p1b, p2b, SGb, kb};
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Using six Taylor coefficients and the code in section B.1 the following solution is obtained

Out[11]= p1b → p1, p2b → p2, SGb → SG, kb → k

demonstrating the global identifiability of the considered parameters.

For the case of ZLOG and ZPOS , the following substitutions and unknown parameters

to solve for are defined, assuming the knowledge of k

In[12]:= subst = {p1 → p1b, p2 → p2b, SG → SGb};

sol = {p1b, p2b, SGb};

Using four Taylor coefficients and the code in section B.1 the following solution is

obtained

Out[12]= p1b → p1, p2b → p2, SGb → SG

demonstrating the global identifiability of the considered parameters. Using the exact

same substitutions and number of Taylor coefficients, the same results are obtained for

the case of ZPOS .
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Model formulation in the VB

toolbox

C.1 Oral minimal model

C.1.1 Formulation in Chapter 4

Within the context of the VB scheme, the oral minimal model (OMM) using the

piecewise-linear input RaPL is formulated as follows in Chapter 4 to suit the Nut-

tall dataset. This includes the replacement of the time of breakpoints t0 − t7 with the

chosen values 0, 10, 30, 60, 90, 120, 180 and 240 min, respectively

dG(t)

dt
= −G(t)X(t)− eθ1 [G(t)−Gb] +

RaPL(t) +Rap(t)

V
, G(0) = G0, (C.1)

dX(t)

dt
= −eθ2(X(t)− eθ3 [I(t)− Ib]), X(0) = X0, (C.2)
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RaPL(t) =



eθ4
10 t for 0 ≤ t ≤ 10

eθ4 + eθ5−eθ4
20 (t− 10) for 10 ≤ t ≤ 30

eθ5 + eθ6−eθ5
30 (t− 30) for 30 ≤ t ≤ 60

eθ6 + eθ7−eθ6
30 (t− 60) for 60 ≤ t ≤ 90

eθ7 + eθ8−eθ7
30 (t− 90) for 90 ≤ t ≤ 120

eθ8 + s−eθ8
60 (t− 120) for 120 ≤ t ≤ 180

s+ eθ9−s
60 (t− 180) for 180 ≤ t ≤ 240

eθ9 exp(−α(t− 240)) for t > 240

Rap(t) = R0 exp(−αt).

The model states are {G(t), X(t)}. The toolbox parameters θ1 − θ9 are normally

distributed and mapped to the log-normally distributed model parameters p1, p2, SI ,

k1, k2, k3, k4, k5 and k7 via the exponential function as explained in section 3.3.2.2. The

variable s replaces the breakpoint at 180 min with the following expression

s =
1

60α
[D · f · α− eθ9 − 5α · (3eθ4 + 5eθ5 + 6eθ6 + 6eθ7 + 9eθ8 + 6eθ9)]

The details of the prior distributions are provided in Table C.1.

Table C.1: Prior values of model parameters and corresponding toolbox parameters

Model
parameter

Median CV [%] Toolbox
parameter

Mean Variance

p1 0.025 [25, 50, 100] θ1 log(0.025) log(CV 2 + 1)

p2 0.012 40 θ2 log(0.012) log(0.42 + 1)

SI 7.1·10−4 100 θ3 log(7.1 · 10−4) log(12 + 1)

k1 3.2·10−3A 50 θ4 log(3.2 · 10−3A) log(0.52 + 1)

k2 7.3·10−3A 50 θ5 log(7.3 · 10−3A) log(0.52 + 1)

k3 5.4·10−3A 50 θ6 log(5.4 · 10−3A) log(0.52 + 1)

k4 5.1·10−3A 50 θ7 log(5.1 · 10−3A) log(0.52 + 1)

k5 3.7·10−3A 50 θ8 log(3.7 · 10−3A) log(0.52 + 1)

k7 1.8·10−3A 50 θ9 log(1.8 · 10−3A) log(0.52 + 1)
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As explained in section 3.3.2.2, the VB toolbox requires the specification of the

model sensitivity, i.e. the derivatives of the model equations with respect to the states

and parameters. The derivatives of model equations with respect to the model states

{G(t), X(t)} are as follows

d

dG(t)

(
dG(t)

dt

)
= −eθ1 −X(t)

d

dX(t)

(
dG(t)

dt

)
= −G(t)

d

dG(t)

(
dX(t)

dt

)
= 0

d

dX(t)

(
dX(t)

dt

)
= −eθ2

(C.3)

The sensitivity equations with respect to the model parameters θ1 − θ9 are as follows

d

dθ1

(
dG(t)

dt

)
= −eθ1(G(t)−Gb)

d

dθ1

(
dX(t)

dt

)
= 0

d

dθ2

(
dG(t)

dt

)
= 0

d

dθ2

(
dX(t)

dt

)
= −eθ2(X(t)− eθ3 [I(t)− Ib])

d

dθ3

(
dG(t)

dt

)
= 0

d

dθ3

(
dX(t)

dt

)
= eθ2+θ3 [I(t)− Ib]

(C.4)

d

dθ4

(
dG(t)

dt

)
=



eθ4
10V for 0 ≤ t ≤ 10

− eθ4 (t−30)
20V for 10 ≤ t ≤ 30

0 for 30 ≤ t ≤ 120

− eθ4 (t−120)
240V for 120 ≤ t ≤ 180

eθ4 (t−240)
240V for 180 ≤ t ≤ 240

d

dθ4

(
dX(t)

dt

)
= 0

d

dθ5

(
dG(t)

dt

)
=



0 for 0 ≤ t ≤ 10

eθ5 (t−10)
20V for 10 ≤ t ≤ 30

− eθ5 (t−60)
30V for 30 ≤ t ≤ 60

0 for 60 ≤ t ≤ 120

− eθ5 (t−120)
144V for 120 ≤ t ≤ 180

eθ5 (t−240)
144V for 180 ≤ t ≤ 240

d

dθ5

(
dX(t)

dt

)
= 0
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d

dθ6

(
dG(t)

dt

)
=



0 for 0 ≤ t ≤ 30

eθ6 (t−30)
30V for 30 ≤ t ≤ 60

− eθ6 (t−90)
30V for 60 ≤ t ≤ 90

0 for 90 ≤ t ≤ 120

− eθ6 (t−120)
120V for 120 ≤ t ≤ 180

eθ6 (t−240)
120V for 180 ≤ t ≤ 240

d

dθ6

(
dX(t)

dt

)
= 0

d

dθ7

(
dG(t)

dt

)
=



0 for 0 ≤ t ≤ 60

eθ7 (t−60)
30V for 60 ≤ t ≤ 90

− eθ7 (t−120)
30V for 90 ≤ t ≤ 120

− eθ7 (t−120)
120V for 120 ≤ t ≤ 180

eθ7 (t−240)
120V for 180 ≤ t ≤ 240

d

dθ7

(
dX(t)

dt

)
= 0

d

dθ8

(
dG(t)

dt

)
=



0 for 0 ≤ t ≤ 90

eθ8 (t−90)
30V for 90 ≤ t ≤ 120

eθ8 (7t−1080)
240V for 120 ≤ t ≤ 180

eθ8 (t−240)
80V for 180 ≤ t ≤ 240

d

dθ8

(
dX(t)

dt

)
= 0

d

dθ9

(
dG(t)

dt

)
=


0 for 0 ≤ t ≤ 120

− (1+30α)eθ9 (t−120)
3600αV for 120 ≤ t ≤ 180

eθ9 (t−240+90α(t−200))
3600αV for 180 ≤ t ≤ 240

d

dθ9

(
dX(t)

dt

)
= 0

C.1.2 Formulation in Chapter 8

In Chapter 8 the OMM is formulated differently due to the reduced number of break-

points in the piecewise linear input function RaPL. Replacing the time of breakpoints

t0 − t4 with the chosen values 0, 10, 30, 60 and 120, the following equations are used

dG(t)

dt
= −G(t)X(t)− eθ1 [G(t)−Gb] +

RaPL(t)

V
, G(0) = Gb,

dX(t)

dt
= −eθ2(X(t)− eθ3 [I(t)− Ib]), X(0) = 0,
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RaPL(t) =



eθ4
10 t for 0 ≤ t ≤ 10

eθ4 + eθ5−eθ4
20 (t− 10) for 10 ≤ t ≤ 30

eθ5 + eθ6−eθ5
30 (t− 30) for 30 ≤ t ≤ 60

eθ6 + s−eθ6
30 (t− 60) for 60 ≤ t ≤ 120

s exp(−α(t− 120)) for t > 120

The model states are again {G(t), X(t)} and the toolbox parameters θ1−θ6 are normally

distributed and mapped to the log-normally distributed model parameters p1, p2, SI , k1,

k2 and k3 via the exponential mapping. The variable s replaces the breakpoint at 120

min with the following expression

s =
α
(
D · f − 5

(
3eθ4 + 5eθ5 + 9eθ6

))
1 + 30α

(C.5)

The prior values given in Table C.1 are unchanged and so are the sensitivity equations

with respect to the states {G(t), X(t)} and system parameters θ1−θ3 given in (C.3) and

(C.4). However, the sensitivity equations with respect to the input function parameters

θ4 − θ6 are changed as follows

d

dθ4

(
dG(t)

dt

)
=



eθ4
10V for 0 ≤ t ≤ 10

− eθ4 (t−30)
20V for 10 ≤ t ≤ 30

0 for 30 ≤ t ≤ 60

αeθ4 (t−60)
4V (1+30α) for 60 ≤ t ≤ 120

d

dθ4

(
dX(t)

dt

)
= 0

d

dθ5

(
dG(t)

dt

)
=



0 for 0 ≤ t ≤ 10

eθ5 (t−10)
20V for 10 ≤ t ≤ 30

− eθ5 (t−60)
30V for 30 ≤ t ≤ 60

5αeθ5 (t−60)
12V (1+30α) for 60 ≤ t ≤ 120

d

dθ5

(
dX(t)

dt

)
= 0
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d

dθ6

(
dG(t)

dt

)
=


0 for 0 ≤ t ≤ 30

eθ6 (t−30)
30V for 30 ≤ t ≤ 60

eθ6 (120−t+15α(t+60))
60V (1+30α) for 60 ≤ t ≤ 120

d

dθ6

(
dX(t)

dt

)
= 0

C.2 Oral minimal model with novel input functions

The implementation of new input functions within the VB toolbox in Chapter 5 uses

model equations (C.1) and (C.2), meaning that sensitivity expressions (C.3) and (C.4)

are identical as well. The differences with respect to the new input functions are pre-

sented in the sections below for the individual functions.

C.2.1 Function RaR

Within the VB toolbox, the proposed input function RaR takes the following form

RaR(t) = A

(
1− 1

1 + e−θ6

)
t

e2θ4
exp

(
− t2

2e2θ4

)
︸ ︷︷ ︸

f1R

+A
1

1 + e−θ6
t

e2θ5
exp

(
− t2

2e2θ5

)
︸ ︷︷ ︸

f2R

.

The parameters T1, T2, RH are mapped to the normally distributed toolbox parameters

θ4 − θ6. This leads to the prior distributions specified in Table C.2.

Table C.2: Prior values of model parameters and corresponding toolbox parameters

Model

parameter

Median CV [%] Toolbox

parameter

Mean Variance

T1 30 30 θ4 log(30) log(0.32 + 1)

T2 100 30 θ5 log(100) log(0.32 + 1)

RH 0.75 30 θ6 − log
(

1
0.75 − 1

)
4
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The sensitivity equations with respect to the parameters θ4−θ6 are defined as follows

d

dθ4

(
dG(t)

dt

)
=
[
f1R

(
e−2θ4t2 − 2

)] 1

V

d

dθ4

(
dX(t)

dt

)
= 0

d

dθ5

(
dG(t)

dt

)
=
[
f2R

(
e−2θ5t2 − 2

)] 1

V

d

dθ5

(
dX(t)

dt

)
= 0

d

dθ6

(
dG(t)

dt

)
=

[
−A t

e2θ4
exp

(
− t2

2e2θ4

)
e−θ6

(1 + e−θ6)2
+ f2R

e−θ6

1 + e−θ6

]
1

V

d

dθ6

(
dX(t)

dt

)
= 0.

C.2.2 Function RaRLN

Within the VB toolbox, the proposed input function RaRLN takes the following form

RaRLN (t) = A

(
1− 1

1 + e−θ7

)
t

e2θ4
exp

(
− t2

2e2θ4

)
︸ ︷︷ ︸

f1R

+A
1

1 + e−θ7
1

t
√
πeθ6

exp

−
[
log

t

eθ5
− eθ6

2

]2
eθ6


︸ ︷︷ ︸

f2LN

.

The parameters T1, T2,W1, RH are mapped to the normally distributed toolbox param-

eters θ4 − θ7. This leads to the prior distributions specified in Table C.3.

Table C.3: Prior values of model parameters and corresponding toolbox parameters

Model

parameter

Median CV [%] Toolbox

parameter

Mean Variance

T1 30 30 θ4 log(30) log(0.32 + 1)

T2 100 30 θ5 log(100) log(0.32 + 1)

W1 0.5 30 θ6 log(0.5) log(0.32 + 1)

RH 0.65 30 θ7 − log
(

1
0.65 − 1

)
1.32
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The sensitivity equations with respect to the parameters θ4−θ7 are defined as follows

d

dθ4

(
dG(t)

dt

)
=
[
f1R

(
e−2θ4t2 − 2

)] 1

V

d

dθ4

(
dX(t)

dt

)
= 0

d

dθ5

(
dG(t)

dt

)
=

[
2f2LNe

−θ6
(
−e−θ6

2
+ log

t

eθ5

)]
1

V

d

dθ5

(
dX(t)

dt

)
= 0

d

dθ6

(
dG(t)

dt

)
=

[
f2LN

(
−e

θ6

2
+ log

t

eθ5
+ e−θ6

(
−e

θ6

2
+ log

t

eθ5

)2
)
−
f2LN

2

]
1

V

d

dθ6

(
dX(t)

dt

)
= 0

d

dθ7

(
dG(t)

dt

)
=

[
−A t

e2θ4
exp

(
− t2

2e2θ4

)
e−θ7

(1 + e−θ7)2
+ f2R

e−θ7

1 + e−θ7

]
1

V

d

dθ7

(
dX(t)

dt

)
= 0.

C.2.3 Function RaLN

Within the VB toolbox, the proposed input function RaLN takes the following form

RaLN (t) = A

(
1− 1

1 + e−θ8

)
1

t
√
πeθ5

exp

−
[
log

t

eθ4
− eθ5

2

]2
eθ5


︸ ︷︷ ︸

f1LN

+A
1

1 + e−θ8
1

t
√
πeθ7

exp

−
[
log

t

eθ6
− eθ7

2

]2
eθ7


︸ ︷︷ ︸

f2LN

The parameters T1, T2,W1,W2, RH are mapped to the normally distributed toolbox pa-

rameters θ4 − θ8. his leads to the prior distributions specified in Table C.4.
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Table C.4: Prior values of model parameters and corresponding toolbox parameters

Model

parameter

Median CV [%] Toolbox

parameter

Mean Variance

T1 30 30 θ4 log(30) log(0.32 + 1)

W1 0.5 30 θ5 log(0.5) log(0.32 + 1)

T2 100 30 θ6 log(100) log(0.32 + 1)

W2 0.5 30 θ7 log(0.5) log(0.32 + 1)

RH 0.7 30 θ8 − log
(

1
0.7 − 1

)
1.62

The sensitivity equations with respect to the parameters θ4−θ8 are defined as follows

d

dθ4

(
dG(t)

dt

)
=

[
2f1LNe

−θ5
(
−e−θ5

2
+ log

t

eθ4

)]
1

V

d

dθ4

(
dX(t)

dt

)
= 0

d

dθ5

(
dG(t)

dt

)
=

[
f1LN

(
−e

θ5

2
+ log

t

eθ4
+ e−θ5

(
−e

θ5

2
+ log

t

eθ4

)2
)
−
f1LN

2

]
1

V

d

dθ5

(
dX(t)

dt

)
= 0

d

dθ6

(
dG(t)

dt

)
=

[
2f2LNe

−θ7
(
−e−θ7

2
+ log

t

eθ6

)]
1

V

d

dθ6

(
dX(t)

dt

)
= 0

d

dθ7

(
dG(t)

dt

)
=

[
f2LN

(
−e

θ7

2
+ log

t

eθ6
+ e−θ7

(
−e

θ7

2
+ log

t

eθ6

)2
)
−
f2LN

2

]
1

V

d

dθ7

(
dX(t)

dt

)
= 0

d

dθ8

(
dG(t)

dt

)
=

−A 1

t
√
πeθ5

exp

−
[
log

t

eθ4
− eθ5

2

]2
eθ5

 e−θ8

(1 + e−θ8)2
+ f2LN

e−θ8

1 + e−θ8

 1

V

d

dθ8

(
dX(t)

dt

)
= 0.
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C.3 Glucose-only models

The glucose-only models are defined as follows within the VB toolbox

dG(t)

dt
= −G(t)X(t)− eθ1 [G(t)−Gb] +

RaLN (t) +Rap(t)

V
, G(0) = G0,

dX(t)

dt
= −eθ2(X(t)− eθ3Z(t, G(t))), X(0) = X0,

RaLN (t) = A

(
1− 1

1 + e−θ8

)
1

t
√
πeθ5

exp

−
[
log

t

eθ4
− eθ5

2

]2
eθ5



+A
1

1 + e−θ8
1

t
√
πeθ7

exp

−
[
log

t

eθ6
− eθ7

2

]2
eθ7


The system parameters p1, p2 and SG are mapped to the normally distributed toolbox

parameters θ1 − θ3. Their prior distributions specified in Table C.5. Regarding the in-

put function parameters θ4−θ8, the priors and sensitivity equations provided in section

C.2.3 remain unchanged.

Table C.5: Prior values of model parameters and corresponding toolbox parameters

Model

parameter

Median CV [%] Toolbox

parameter

Mean Variance

p1 0.025 25 θ1 log(0.025) log(0.252 + 1)

p2 0.012 40 θ2 log(0.012) log(0.42 + 1)

SG 0.05 50 θ3 log(0.05) log(0.52 + 1)

The function Z is described with three different forms ZLIN , ZLOG and ZPOS spec-

ified in Table 6.1. Irrespective of the chosen formulation of Z, the derivatives of the

model equations with respect to parameters θ1 − θ3 are as follows

d

dθ1

(
dG(t)

dt

)
= −eθ1(G(t)−Gb)

d

dθ1

(
dX(t)

dt

)
= 0

d

dθ2

(
dG(t)

dt

)
= 0

d

dθ2

(
dX(t)

dt

)
= −eθ2(X(t)− eθ3Z(t, G(t))

d

dθ3

(
dG(t)

dt

)
= 0

d

dθ3

(
dX(t)

dt

)
= eθ2+θ3Z(t, G(t))

For the case of ZLIN the derivatives of the model equations with respect to the states
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{G(t), X(t)} are as follows

d

dG(t)

(
dG(t)

dt

)
= −eθ1 −X(t)

d

dX(t)

(
dG(t)

dt

)
= −G(t)

d

dG(t)

(
dX(t)

dt

)
= eθ2+θ3

d

dX(t)

(
dX(t)

dt

)
= −eθ2

For the case of ZLOG the derivative of dX(t)/dt with respect to G(t) changes as follows

d

dG(t)

(
dX(t)

dt

)
=

eθ2+θ3+G(t)

eG(t) + eGbβ

For the case of ZPOS the derivative of dX(t)/dt with respect to G(t) changes as follows

d

dG(t)

(
dX(t)

dt

)
=
eθ2+θ3+γ(G(t)−Gb)(1 + eγ(G(t)−Gb) + γ(G(t)−Gb))

(1 + eγ(G(t)−Gb))2

211



Appendix D

Additional information

D.1 Chapter 4

The results of inverting the OMM with different fixed values of V and f are provided

in Figure D.1.

Figure D.1: Influence of inverting the OMM with different fixed values of the distri-
bution Volume V (a)-(c) and fractional absorption f (d)-(f) on model parameters p1,
p2 and SI .
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D.2 Chapter 5

In order to demonstrate the influence of the individual parameters of the OMM using

RaR, RaRLN and RaLN and their prior distributions on the model output, several

model simulations are carried out. Here, the value of one parameter at a time is varied

across the two-sigma range of its prior distribution, while the other parameters are kept

fixed at their prior medians. The results for the different models are given in Figures

D.2 - D.4.

Figure D.2: Influence of individual model parameters on the model output of the
OMM using RaR. The value of one parameter at a time is varied across the two-sigma
range of its prior distribution, while the other parameters are kept fixed at their prior
medians. The colours indicate increasing parameter values from blue to red. The black
lines indicates the response from the prior median. As insulin input, the averaged insulin
profile from the STAND meal was used.
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Figure D.3: Influence of individual model parameters on the model output of the
OMM using RaRLN . The value of one parameter at a time is varied across the two-
sigma range of its prior distribution, while the other parameters are kept fixed at their
prior medians. The colours indicate increasing parameter values from blue to red. The
black lines indicates the response from the prior median. As insulin input, the averaged
insulin profile from the STAND meal was used.

Figure D.4: Influence of individual model parameters on the model output of the
OMM using RaR. The value of one parameter at a time is varied across the two-sigma
range of its prior distribution, while the other parameters are kept fixed at their prior
medians. The colours indicate increasing parameter values from blue to red. The black
lines indicates the response from the prior median. As insulin input, the averaged insulin
profile from the STAND meal was used.
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D.3 Chapter 5

D.3.1 Chen’s model

Chen et al. [26] and is described by the following equations

dG(t)

dt
= −f1(G(t)) + f2(G(t), I(t− τ1))− SIf3(G(t), I(t)) + F (t), (D.1)

dI(t)

dt
= −p2I(t) + p3f4(G(t− τ2)). (D.2)

Functions f1, f2 and f3 describe glucose effectiveness, hepatic glucose production and

insulin-dependent glucose utilisation, respectively. The details are given in Table D.1

Table D.1: Details of functions f1 - f4 in Chen’s model

Function Expression Description

f1(G(t))

Ub(1− exp(−G(t)

c2Vg
))+

Sb +
Sc − Sb

1 + exp(δ(G(t)−330
c3V g

− c7))

Insulin-independent glu-
cose utilisation and
hyperglycaemic effect

f2(G(t), I(t− τ1))

Rg

1 + exp(e1(
I(t)−τ1
V p − c5))

×

1

1 + exp(γ( G(t)
V gc3

− c6))

Hepatic glucose production
including a hyperglycaemic
effect

f3(G(t), I(t))

G(t)

Vgc3
× (U0+

Uc − U0

1 + exp(−κ log( I(t)c4 )( 1
Vc

+ 1
Etc

))
)

Hepatic glucose production
including a hyperglycaemic
effect

f4(G(t− τ2))
Rc

1 + exp( c1e1 −
G(t)−τ2
Vge1

)
Delayed, glucose-
dependant insulin pro-
duction (sigmoidal shape)

215



Appendix D. Additional information 216

D.4 Parameter influence

In order to demonstrate the influence of the individual parameters of the GOM using

ZLIN , ZLOG and ZPOS and their prior distributions on the model output, several model

simulations are carried out. Here, the value of one parameter at a time is varied across

the two-sigma range of its prior distribution, while the other parameters are kept fixed

at their prior medians. The results for the different models are given in Figures D.5 -

D.6.

Figure D.5: Influence of individual model parameters on the model output of the the
GOM using ZLIN . The value of one parameter at a time is varied across the two-sigma
range of its prior distribution, while the other parameters are kept fixed at their prior
medians. The colours indicate increasing parameter values from blue to red. The black
lines indicates the response from the prior median.
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Figure D.6: Influence of individual model parameters on the model output of the the
GOM using ZLOG. The value of one parameter at a time is varied across the two-sigma
range of its prior distribution, while the other parameters are kept fixed at their prior
medians. The colours indicate increasing parameter values from blue to red. The black
lines indicates the response from the prior median.

Figure D.7: Influence of individual model parameters on the model output of the the
GOM using ZPOS . The value of one parameter at a time is varied across the two-sigma
range of its prior distribution, while the other parameters are kept fixed at their prior
medians. The colours indicate increasing parameter values from blue to red. The black
lines indicates the response from the prior median.
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D.5 Chapter 7

Figure D.8: Comparison of the estimation results for (a) p1 and (b) p2 of the GOM
estimated from the CGM data in comparison to the corresponding results of the OMM
estimated from the blood sampling data. The results give the median and one-sigma
range of the log-normal posterior distributions. In subject S1 no values are inferred
during lunch due to missing data. In subject S4, SI could not be estimated with the
OMM due to missing data.
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